Subscribe to RSS
DOI: 10.1055/s-2003-42055
Tin Triflate Catalysed Selective Synthesis of N,N′-Unsymmetrically Substituted N-(Hydroxyclovanyl)-N′-aryl Acetamidines
Publication History
Publication Date:
08 October 2003 (online)
Abstract
The unsymmetrically substituted amidines 6a-d have been prepared in one step from caryophyllene oxide (2), aromatic amines (4a-c, 5), and tin triflate as catalyst, in refluxing MeCN.
Key words
natural products - cyclization - epoxides - Lewis acids - amidines
- 1
Greenhill JV.Lue P. In Amidines and Guanidines in Medicinal Chemistry. Progress in Medicinal Chemistry Vol. 30:Ellis GP.Luscombe DK. Elsevier; Amsterdam: 1993. p.203 - 2
Usui H.Watanabe Y.Kanao M. J. Heterocycl. Chem. 1993, 30: 551 -
3a
Granik VG. Russ. Chem. Rev. 1983, 52: 377 -
3b
Boyd GV. In Recent Advances in the Synthesis of Amidines, The Chemistry of Amidines and ImidatesPatai S.Rappoport Z. John Wiley and Sons; Chichester: 1991. p.339 -
4a From microbial broth of Pseudomonas fluorescens:
Hida T.Tsubotani S.Funabashi Y.Ono H.Harada S. Bull. Chem. Soc. Jpn. 1993, 66: 863 -
4b From Niembergia hippomanica:
Buschi CA.Pomilio AB. Phytochemistry 1987, 26: 863 -
4c From Brunfelsia grandiflora D:
Lloyd HA.Fales HM.Goldman ME.Jerina DM.Plowman T.Schultes RE. Tetrahedron Lett. 1985, 26: 2623 -
4d From Streptomyces distallicus:
Arcamone F.Orezzi PG.Barbieri W.Nicolella V.Penco S. Gazz. Chim. Ital. 1967, 97: 1097 -
4e
Oxley P.Short WF. J. Chem. Soc. 1946, 147 -
4f Streptomyces spp.:
Nakamura S.Karasawa K.Yonehara H.Tanaka N.Um H. J. Antibiot. Ser. A 1961, 14: 103 -
4g From Indigofera spicata:
Hegarty MP.Pound AW. Nature (London) 1968, 217: 354 -
4h
Peck RL,Schafer HM, andWolf FJ. inventors; US Pat. 2804463. From microbial broth of Nocardia Formica, beta-(5-imino-2-pyrrolidine-carboxamido)-propanamidine: -
4i
Peck RL,Schafer HM, andWolf FJ. inventors; US Appl. Pat. 594267. Also see: - 5
Grivas JC.Taurins A. Can. J. Chem., Rev. Can. Chim. 1961, 39: 761 -
6a
Pinner A. Chem. Ber. 1885, 18: 2845 -
6b
Stilz HU.Jablonka B.Just M.Knolle J.Paulus EF.Zoller G. J. Med. Chem. 1996, 39: 2118 - 7
Schnur RC. J. Org. Chem. 1979, 44: 3726 -
8a Alkali metal salts:
Passet BV.Voropaev TI.Kalashni NA.Kulbitsk GN. Zh. Org. Khim. 1972, 8: 1246 -
8b Aluminium amides:
Garigipati RS. Tetrahedron Lett. 1990, 31: 1969 -
8c Ammonium alkyl or aryl sulfonates:
Charlton PT.Maliphant GK.Oxley P.Peak DA. J. Chem. Soc. 1951, 485 ; ref. 4e -
8d Lewis acids (AlCl3, ZnCl2) at 150-200 °C:
Oxley P.Partridge MW.Short WF. J. Chem. Soc. 1947, 1110 -
8e Cu(I)Cl:
Rousselet G.Capdevielle P.Maumy M. Tetrahedron Lett. 1993, 34: 6395 -
8f FeCl3 and alkyl halides:
Fuks R. Tetrahedron 1973, 29: 2147 -
8g Triethyloxonium tetrafluoroborate:
Lambert C.Merenyi R.Caillaux B.Viehe HG. Bull. Soc. Chim. Belg. 1978, 94: 457 - 9 Lanthanide(III) triflates:
Forsberg JH.Spaziano VT.Balasubramanian TM.Liu GC.Kinsley SA.Duckworth CA.Poteruca JJ.Brown PS.Miller JL. J. Org. Chem. 1987, 52: 1017 - 10 SmI2:
Xu F.Sun JH.Shen Q. Tetrahedron Lett. 2002, 43: 1867 - PCl5, POCl3 and SOCl2:
-
11a
Partridge MW.Smith A. J. Chem. Soc., Perkin Trans. 1 1973, 5: 453 -
11b
Bredereck H.Gompper R.Klemm K.Rempfer H. Chem. Ber.-Recueil 1959, 92: 837 - 12 Tetrakis(dimethylamino)titanium:
Wilson JD.Wager JS.Weingarten H. J. Org. Chem. 1971, 36: 1613 - 13
Dunn PJ. In Amidines and N-Substituted Amidines, Comprehensive Organic Functional Groups Transformations Vol. 5.:Katritzky AR.Meth-Cohn O.Rees CW. Elsevier; Amsterdam: 1995. p.751 - 14
Newbery G.Webster W. J. Chem. Soc. 1947, 738 -
15a
Collado IG.Hanson JR.Macías-Sánchez AJ. Tetrahedron 1996, 52: 7961 -
15b
Collado IG,Hanson JR, andMacías-Sánchez A. inventors; J. Span. Pat. ES 2154185. ; Chem. Abstr. 2001, 135, 195688 - 15c Collado I. G., Hanson J. R., Macías-Sánchez A.; Span. Pat. Appl. ES 1998-2241, 1998
- 16
Collado IG.Hernández-Galán R.Durán-Patrón R.Cantoral JM. Phytochemistry 1995, 38: 647 - 17
Hanson JR. Pure Appl. Chem. 1981, 53: 1155 -
18a
Rebordinos L.Cantoral JM.Victoria-Prieto M.Hanson JR.Collado IG. Phytochemistry 1996, 42: 383 -
18b
Collado IG.Hernandez-Galán R.Victoria-Prieto M.Hanson JR.Rebordinos L. Phytochemistry 1996, 41: 513 - 19
Collado IG.Hanson JR.Macías-Sánchez AJ.Mobbs D. J. Nat. Prod. 1998, 61: 1348 - Excess of nucleophiles:
-
20a
Möller F. In Methoden der Organischen Chemie (Houben- Weyl) Vol. 11/1, 4th ed.:Müller E. Thieme Verlag; Stuttgart: 1957. p.311 -
20b
Mousseron M.Jullien J.Jolchine Y. Bull. Soc. Chim. Fr. 1952, 757 -
20c
Deyrup JA.Moyer CL. J. Org. Chem. 1969, 34: 175 -
20d
Crooks PA.Szyndler R. Chem. Ind. (London) 1973, 1111 - 21 Metal amides and Lewis acids:
Cossy J.Bellosta V.Hamoir C.Desmurs J.-R. Tetrahedron Lett. 2002, 43: 7083 ; and references cited therein - Lewis acids with poorly nucleophilic counter-anions:
-
22a Ph4SbOTf:
Fujiwara M.Imada M.Baba A.Matsuda H. Tetrahedron Lett. 1989, 30: 739 -
22b Yb(OTf)3:
Meguro M.Asao N.Yamamoto Y. J. Chem. Soc., Perkin Trans.1 1994, 2597 -
22c
Hou X.-L.Wu J.Dai L.-X.Xia L.-J.Tang M.-H. Tetrahedron: Asymmetry 1998, 9: 1747 -
22d Ln(OTf)3:
Chini M.Crotti P.Favero L.Macchia F.Pineschi M. Tetrahedron Lett. 1994, 35: 433 -
22e LiOTf:
Auge J.Leroy F. Tetrahedron Lett. 1996, 37: 7715 - 23
Sekar G.Singh VK. J. Org. Chem. 1999, 64: 287 - 26
Herman H.Tezuka Y.Kikuchi T.Supriyatna S. Chem. Pharm,. Bull. 1994, 42: 138 - 28
Gautier JA.Miocque M.Fauran C.Lecloare AY. Bull. Soc. Chim. Fr. 1971, 2: 478 - 29 When a less hindered epoxide is prepared on the caryophyllane skeleton, normal opening products are observed:
Collado IG.Hanson JR.Hitchcock PB.Macías-Sánchez AJ. J. Org. Chem. 1997, 62: 1965
References
Typical Experimental Procedure: To a magnetically stirred solution of caryophyllene oxide (2) (450 mg, 2.045 mmol) and aniline (4a) (353 mg, 8.18 mmol) in anhyd MeCN (8 mL), Sn(OTf)2 (351 mg, 0.51 mmol) was added and the reaction mixture was heated to 80 °C. After 24 h., once compound 2 was consumed (TLC), the solvent was evaporated under reduced pressure and the crude reaction mixture was purified by column chromatography on silica gel to yield the amidine 6a (340 mg, 47%) and the amine 7a (36 mg, 5%).
25Selected physical data for compound 6a: [α]D +16.6 (c 9.2 mg/mL, MeOH). Selected physical and spectroscopic data for compound 6b: [α]D -3.2 (c 43.3 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ = 0.86 (s, 3 H, H3-15′), 0.89 (s, 3 H, H3-13′α), 1.01 (s, 3 H, H3-14′β), 1.20 (d, J 12 ′ a-12 ′ b = 11.0 Hz, 1 H, H-12′a), 1.42 (d, J 12 ′ b-12 ′ a = 11.0 Hz, 1 H, H-12′b), 1.62 (dd, J 3 ′ α - 2 ′ α = 6.6 Hz, J 3 ′ α - 3 ′ β = 11.4 Hz, 1 H, H-3′α), 1.70 (t, J 3 ′ β - 2 ′ α = J 3 ′ β - 3 ′ α = 11.4 Hz, 1 H, H-3′β), 1.94 (m, 1 H, H-10′b), 2.04 (s, 3 H, H3-2), 3.16 (br s, 1 H, H-9′β), 3.72 (s, 3 H, H3-1′′′), 4.04 (dd, J 2 ′ α -3 ′ β = 11.40 Hz, J 2 ′ α -3 ′ α = 6.6 Hz, 1 H, H-2′α), 6.92 (d, J 3 ′′ - 2 ′′ = J 5 ′′ - 6 ′′ = 9.0 Hz, 2 H, H-3′′, H-5′′), 7.19 (d, J 2 ′′ - 3 ′′ = J 6 ′′ - 5 ′′ = 9.0 Hz, 2 H, H-2′′, H-6′′). 13C NMR (100 MHz, CD3OD): δ = 18.60 (c, C-2), 21.56 (t, C-6′), 24.62 (c, C-13′), 26.54 (t, C-10′), 28.79 (t, C-11′), 29.01 (c, C-15′), 30.91 (c, C-14′), 33.92 (t, C-7′), 36.01 (s, C-8′), 36.62 (t, C-12′), 39.07 (s, C-4′), 45.29 (t, C-3′), 47.03 (s, C-1′), 51.91 (d, C-5′), 56.07 (c, C-1′′′), 61.97 (d, C-2′), 75.13 (d, C-9′), 115.92 (2C, d, C-3′′, C-5′′), 128.65 (s, C-1′′), 129.50 (2C, d, C-2′′, C-6′′), 161.34 (s, C-4′′), 165.71 (s, C-1). MS (EI): m/z (rel. int.) = 384 (87) [M+], 369 (22) [M - 15]+, 325 (41), 262 (33). Compound 6c: [α]D +12.9 (c 20 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ 0.92 (s, 3 H, H3-15′), 0.94 (s, 3 H, H3-13′α), 1.05 (s, 3 H, H3-14′β), 1.74 (m, 1 H, H-12′b), 1.77 (s, 3 H, H3-2), 2.00 (m, 1 H, H-10′b), 3.22 (br s, 1 H, H-9′β), 4.29 (m, 1 H, H-2′α), 6.70 (d, J 2 ′′ -3 ′′ = J 6 ′′ -5 ′′ = 8.4 Hz, 2 H, H-2′′, H-6′′), 7.33 (d, J 3 ′′ -2 ′′ = J 5 ′′ - 6 ′′ = 8.4 Hz, 2 H, H-3′′, H-5′′). 13C NMR (100 MHz, CD3OD): δ = 18.08 (c, C-2), 21.76 (t, C-6′), 25.02 (c, C-13′), 26.79 (t, C-10′), 29.04 (t, C-11′), 29.18 (c, C-15′), 31.31 (c, C-14′), 34.46 (t, C-7′), 35.93 (s, C-8′), 37.19 (t, C-12′), 38.40 (s, C-4′), 45.74 (t, C-3′), 46.68 (s, C-1′), 52.11 (d, C-5′), 59.40 (d, C-2′), 75.78 (d, C-9′), 115.64 (s, C-4′′), 126.18 (d, 2 C, C-2′′, C-6′′), 132.63 (d, C-3′′, C-5′′), 152.51 (s, C-1′′), 159.51 (s, C-1). MS (EI): m/z (rel. int.) = 434(48) [M + 2]+, 432 (47) (M+), 375 (23), 373 (22), 353 (41) [M - 79]+, 292 (27), 262(46). Compound 6d: [α]D +98.4 (c = 17 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ = 0.96 (s, 3 H, H3-15′), 1.00 (s, 3 H, H3-13′), 1.14 (s, 3 H, H3-14′), 1.86 (2 H, H-3′α, H-3′α), 2.08 (m, 1 H, H-10′b), 2.59 (m, 3 H, H3-2), 3.25 (sa, 1 H, H-9′β), 4.02 (dd, J 2 ′ α -3 ′ β = 11.1 Hz, J 2 ′ α -3 ′ α = 6.3 Hz, 1 H, H-2′α), 7.40 (t, J 4 ′′ -3 ′′ = J 4 ′′ - 5 ′′ = 5.0 Hz, 1 H, H-4′′), 8.81 (d, J 3 ′′ - 4 ′′ = J 5 ′′ - 4 ′′ = 5.0 Hz, 2 H, H-3′′, H-5′′). 13C NMR (100 MHz, CD3OD): δ = 17.81 (c, C-2), 21.60 (t, C-6′), 24.77 (c, C-13′), 26.64 (t, C-10′), 28.89 (c, C-15′), 29.01 (t, C-11′), 30.91 (c, C-14′), 33.83 (t, C-7′), 36.03 (s, C-8′), 36.46 (t, C-12′), 39.49 (s, C-4′), 46.34 (t, C-3′), 46.61 (s, C-1′), 51.87 (d, C-5′), 65.85 (d, C-2′), 75.14 (d, C-9′), 119.82 (d, C-4′′), 159.16 (s, C-1′′), 159.69 (d, 2 C, C-3′′, C-5′′), 165.96 (s, C-1). HMBC cross peaks (selected): C-1 → H-2′α, H3-2. MS (EI): m/z (rel. int.) = 357 (27) [M + 1]+, 339 (40) [M + 1 - 18]+, 263(24)
27Selected physical and spectroscopic data for compound 8: [α]D +14.0 (c 2.2 mg/mL, MeOH). 1H NMR (400 MHz, CDCl3): δ = 0.92 (s, 3 H, H3-13′α), 0.95 (s, 3 H, H3-15′), 1.06 (s, 3 H, H3-14′β), 1.66 (dd, J = 10.8, 11.6 Hz, 1 H, H-3′β), 1.76 (m, 1 H, H-11′b), 1.77 (s, 3 H, H3-2), 2.00 (m, 1 H, H-10′b), 3.24 (s, 3 H, H3-1′′′), 3.31 (br s,1 H, H-9′β), 3.46 (dd, J = 6.0, 10.8 Hz, 1 H, H-2′α), 7.08 (d, J = 7.6 Hz, 2 H, H-2′′, H-6′′), 7.17 (t, J = 7.6 Hz, 1 H, H-4′′), 7.32 (d, J = 7.6 Hz, 2 H, H-3′′, H-5′′). 13C NMR (75 MHz, CDCl3): δ = 15.06 (q, C-2), 21.02 (t, C-6′), 25.51 (q, C-13′α), 26.45 (t, C-10′), 28.12 (t, C-11′), 28.50 (q, C-15′), 31.38 (q, C-14′β), 33.45 (t, C-7′), 34.95 (s, C-8′*), 36.76 (t, C-12′), 38.62 (s, C-1′*), 39.67 (q, C-1′′′), 46.09 (s, C-4′*), 47.46 (t, C-3′), 50.75 (d, C-5′), 67.55 (d, C-2′), 75.41 (d, C-9′), 125.41 (d, C-4′′), 126.75 (d, 2 C, C-2′′, C-6′′), 129.15 (d, 2 C, C-3′′, C-5′′), 147.17 (s, C-1′′), 156.02 (s, C-1). HMBC cross peaks(selected): C-1 → H3-1′′′, H-2′α, H3-2; C-1′′ → H3-1′′′, H-3′′, H-5′′. MS (EI): m/z (rel. int.) = 368 [M]+(10), 353 [M - 15]+(5), 262 (20).