RSS-Feed abonnieren
DOI: 10.1055/s-2003-42088
Cobalt Mediated Intramolecular [2+2+2]-Cycloaddition of Enediynes Towards Linear Annelated Polycycles [1]
Publikationsverlauf
Publikationsdatum:
15. Oktober 2003 (online)
Abstract
The cobalt mediated [2+2+2]-cycloaddition of enediynes 13 and 18 affords linear annelated polycycles such as the hexahydro naphthalene 14 and the decahydro anthracene 19. This latter compound can be transformed into the enantiomerically pure anthracene derivative 21 in only two reaction steps. 1,9,10-Trihydroxy octahydro anthracene (21) represents the ABC-framework of many anthracycline antibiotics such as the antitumor active daunomycine.
Key words
[2+2+2]-cycloaddition - enediynes - annelated polycycles
- 1 Transition Metal Catalyzed Reactions in Organic Synthesis, VI. For part V, see:
Groth U.Richter N.Kalogerakis A. Eur. J. Org. Chem. 2003, in print - Reviews:
-
2a
Vollhardt KPC. Angew. Chem., Int. Ed. Engl. 1984, 23: 539 ; Angew. Chem. 1984, 96, 525 -
2b
Schore NE. Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Pattenden G. Pergamon; Oxford: 1991. p.1129-1162 -
2c
Malaska MJ.Vollhardt KPC. Advances in Natural Product ChemistryAtta-ur Rahman HEJ. Taylor & Francis; London: 1992. p.53-63 -
2d
Shore NE. Chem. Rev. 2000, 100: 1081 -
2e
Trost BM. Angew. Chem., Int. Ed. Engl. 1995, 34: 259 ; Angew. Chem. 1995, 107, 285 -
2f
Lautens M.Klute W.Tam W. Chem. Rev. 1996, 96: 49 -
2g
Malacria M. Chem. Rev. 1996, 96: 289 -
2h
Ojima I.Tzamarioudaki M.Li Z.Donovan RJ. Chem. Rev. 1996, 96: 635 -
2i
Saito S.Yamamoto Y. Chem. Rev. 2000, 100: 2901 -
2j
Hartley RC.Caldwell ST. J. Chem. Soc., Perkin Trans. 1 2000, 477 -
2k
Malacria M.Aubert C.Renaud JL. In Science of Synthesis: Houben-Weyl, Methods of Molecular Transformations Vol. 1:Lautens M. Georg Thieme Verlag; Stuttgart: 2001. p.439-530 -
3a
Sternberg ED.Vollhardt KPC. J. Am. Chem. Soc. 1980, 102: 4839 -
3b
Sternberg ED.Vollhardt KPC. J. Org. Chem. 1984, 49: 1564 -
3c
Dunach E.Halterman RL.Vollhardt KPC. J. Am. Chem. Soc. 1985, 107: 1664 -
3d
Slowinski F.Aubert C.Malacria M. Tetrahedron Lett. 1999, 40: 707 -
3e
Slowinksi F.Aubert C.Malacria M. Eur. J. Org. Chem. 2001, 3941 -
4a
Gadek TR.Vollhardt KPC. Angew. Chem., Int. Ed. Engl. 1981, 20: 802 ; Angew. Chem. 1981, 93, 801 -
4b
Malacria M.Vollhardt KPC. J. Org. Chem. 1984, 49: 5010 -
4c
Johnson EP.Vollhardt KPC. J. Am. Chem. Soc. 1991, 113: 381 -
4d
Germanas J.Aubert C.Vollhardt KPC. J. Am. Chem. Soc. 1991, 113: 4006 -
4e
Llerena D.Buisine O.Aubert C.Malacria M. Tetrahedron 1998, 54: 9373 -
4f
Eichberg MJ.Dorta RL.Lamottke K.Vollhardt KPC. Org. Lett. 2000, 2: 2479 -
4g
Eichberg MJ.Dorta RL.Grotjahn DB.Lamottke K.Schmidt M.Vollhardt KPC. J. Am. Chem. Soc. 2001, 123: 9324 -
4h
Slowinski F.Aubert C.Malacria M. J. Org. Chem. 2003, 68: 378 - 5
Chang CA.King JA.Vollhardt KPC. J. Chem. Soc., Chem. Commun. 1981, 53 -
6a For similar observations see:
Bradley A.Motherwell WB.Ujjainwalla F. Chem. Commun. 1999, 917 ; and references cited therein -
6b
Phansavath P.Aubert C.Malacria M. Tetrahedron Lett. 1998, 39: 1561 -
7a
Stork G.Keitz PF. Tetrahedron Lett. 1989, 6981 -
7b
Tamao K.Kobayashi K.Ito Y. Synlett 1992, 539 -
7c Reviews:
Bols M.Skrydstrup T. Chem. Rev. 1995, 95: 1253 -
7d
Fensterbank L.Malacria M.Siebuirth SM. Synthesis 1997, 813 -
7e
Gauthier DRJ.Zandi KS.Shea KJ. Tetrahedron 1998, 54: 2289 -
7f
Skrydstrup T. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 4:Fleming I. Georg Thieme Verlag; Stuttgart: 2001. p.269-291 - 8 (-)-(1S)-2-Cyclohexen-1-ol (17) was prepared by enantioselective deprotonation of cyclohexene oxide according to Asami’s protocol:
Asami M. Bull. Chem. Soc. Jpn. 1990, 63: 721 - 9
Pohl E.Herbst-Irmer R.Groth U.Eckenberg P. Acta Cryst. 1995, C51: 891 - 10
Fu PP.Harvey RG. Chem. Rev. 1978, 78: 317 - 11
Kalman JR.Pinkey JT.Sternhall S. Tetrahedron Lett. 1972, 5369 - Reviews:
-
13a
Krohn K. Angew. Chem., Int. Ed. Engl. 1986, 25: 790 ; Angew. Chem. 1986, 98, 788 -
13b
Krohn K. Tetrahedron 1990, 46: 291 -
13c
Cambie RC.Rutledge PS.Woodgate PD. Aust. J. Chem. 1992, 45: 483 -
13d
Lown JW. Chem. Soc. Rev. 1993, 22: 165
References
Typical Experimental Procedure:
To a solution of 1-trimethylsilyl-octa-1,7-diyne (10) (1.10 g, 6.2 mmol) in THF (30 mL) was added a solution of n-BuLi in hexane (1.6 M, 4.05 mL, 6.5 mmol) at -78 °C within 20 min. The reaction mixture was allowed to warm to -30 °C and stirring was continued for 45 min. A solution of Me2Si(NEt2)Cl (DDSCl) (1.12 g, 6.8 mmol) in THF (5 mL) was added at -78 °C and the reaction mixture was allowed to warm to r.t. within 12 h. A solution of the allylic alcohol 12 or 17 (7.4 mmol) in THF (3 mL) was added at -78 °C, the reaction mixture was allowed to warm to r.t. and the reaction was monitored by TLC analysis. When none of the temporarily formed enyne diethyl amino dimethyl silane was detectable by TLC analysis (after ca 12 h) the solvent was removed in vacuo (35 °C, 12 torr). The residue was dissolved in Et2O (10 mL) and the inorganic components were removed by filtration over silica gel (deactivated by silylation with HMDS) or celite. The solvent was removed in vacuo (20 °C, 12 torr) and the residue was purified by bulb-to-bulb distillation to afford enediynes 13 or 18.
A solution of enediyne 13 or 18 (1.1 mmol) in iso-octane (30 mL) was cooled to -70 °C and the apparatus was evacuated for 15 min (0.5 torr). The flask was allowed to warm to r.t. and Ar was allowed to fill up the apparatus. The solution was cooled again to -70 °C and the procedure was repeated twice as described above. CpCo(CO)2 (0.41 g, 2.3 mmol) was added and the reaction mixture was refluxed under irradiation with visible light until no starting material could be detected by TLC analysis (afte ca 2 h). The reaction mixture was cooled down to r.t. and volatile components were removed in vacuo (30 °C/0.1 torr). The red brown residue was dissolved in degassed pentane (30 mL) and filtered through celite under an Ar atmosphere. Ferrous chloride hexahydrate (1.54 g, 5.7 mmol) was dissolved in MeCN (12 mL) and the solution cooled to -30 °C. At this temperature the filtrate was added under stirring and stirring was continued for 30 min. The reaction mixture was cooled to -70 °C and the pentane layer was removed from the frozen MeCN layer. The MeCN layer was allowed to warm to -30 °C, pentane (20 mL) was added and the procedure was repeated three times as described above. The pentane layers were combined, the solvent was removed in vacuo (30 °C, 12 Torr) and the residue purified by chromatography on silica gel with Et2O-petroleum ether-Et3N (1:20:0.01) to afford dienes 14 or 19.
Analytical data of selected compounds:
Compound 13a: Rf = 0.44 (Et2O-petroleum ether, 1:20); bp 110-120 °C (0.05 torr). IR(film): 2160 (C≡CSi), 1635 (C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.12 [s, 9 H, Si(CH3)3], 0.22 [s, 6 H, Si(CH3)2O], 1.54-1.68 (m, 4 H, CH2), 2.16-2.22 (m, 4 H, CH2C≡C), 4.21 (dt, 3
J = 5.0 Hz, 4
J = 1.3 Hz, 2 H, CH2O), 5.09 (ddt, J
cis = 10.0 Hz,
2
J = 4
J = 1.3 Hz, 1 H, CH=CH2, H-cis), 5.25 (ddt, J
trans = 17.0 Hz, 2
J = 4
J = 1.3 Hz, 1 H, CH=CH2, H-trans), 5.93 (ddt,
J
trans = 17.0 Hz, J
cis = 10.0 Hz, 3
J = 5.0 Hz, 1 H, CH=CH2). 13C NMR (50.3 MHz, CDCl3): δ = 0.11 [Si(CH3)3], 0.21 [Si(CH3)2O], 19.21, 19.32 (CH2), 27.40, 27.56 (CH2C≡C), 64.28 (CH2O), 82.46, 84.72 (C≡CSi), 106.82, 107.55 (C≡CSi), 114.85 (CH=CH2), 136.80 (CH=CH2). MS (70 eV): m/z (%) = 277 (2) [M+ - CH3), 133 (90) [C8H9Si+], 73(100) [C3H9Si+]. Anal. Calcd for C16H28OSi2 (292.6): C, 65.68; H, 9.64. Found: C, 65.76; H, 9.51.
Compound
rac
-14a: Rf = 0.19 (Et2O-petroleum ether, 1:20); mp 74 °C. IR(film): 1620 (C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.14 [s, 9 H, Si(CH3)3], 0.26, 0.28 [2 × s, 6 H, Si(CH3)2O], 1.34-1.63 (m, 3 H, CH2CH2), 2.05-2.24 (m, 2 H, CH2C=C), 2.26-2.52 (m, 3 H, CH2C=C), 2.58-2.76 (m, 1 H, CHC=C), 3.40 (dd, 2
J = 3
J = 9.5 Hz, 1 H, SiMe2OCH2), 4.27 (dd, 2
J = 9.5 Hz, 3
J = 7.6 Hz, 1 H, SiMe2OCH2). 13C NMR (50.3 MHz, CDCl3): δ = -0.56, 0.16 [Si(CH3)2O], 0.33 [Si(CH3)3], 24.43, 24.60 29.73, 31.31, 33.11 (CH2), 40.06 (CHC=C), 72.40, (CH2O), 131.02, 135.37, 143.25, 145.49 (C=C). MS (70 eV): m/z (%) = 292 (6) [M+], 73 (70) [C3H9Si+], 57 (100) [C3H5O+]. Anal. Calcd for C16H28OSi2 (292.6): C, 65.68; H, 9.64. Found: C, 65.85; H 9.55.
Compound 18: Rf = 0.47 (Et2O-petroleum ether, 1:20). bp 130-140 °C (0.005 torr). [α]20
D = -30.6 (c 1.0, CHCl3). IR(film): 3005 (CH, alkene), 2160 (C≡CSi), 1640 (C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.12 [s, 9 H, Si(CH3)3], 0.22 [s, 6 H, Si(CH3)2O], 1.46-2.03 (m, 10 H, CH2), 2.18-2.30 (m, 4 H, CH2C≡C), 4.31-4.41 (m, 1 H, CHO), 5.62-5.82 (m, 2 H, CH=CH). 13C NMR (50.3 MHz, CDCl3): δ = 0.10 [Si(CH3)3], 0.83, 0.89 [Si(CH3)2O], 19.21, 19.31, 24.92, 27.42, 27.55, 31.95 (CH2), 67.08 (OCH), 83.17, 84.68 (C≡CSi), 106.84, 107.08 (C≡CSi), 129.53, 130.44 (CH=CH). MS (70 eV): m/z (%) = 332 (1.1), [M+], 133(42) [C8H9Si+], 73(100) [C3H9Si+]. Anal. Calcd for C19H32OSi2 (332.6): C, 68.61; H, 9.70. Found: C, 68.58; H, 9.75.
Compound 19: Rf = 0.22 (Et2O-petroleum ether, 1:20). [α]20
D = -40.2 (c 0.8, CHCl3). IR(film): 1620 (C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.14 [s, 9 H, Si(CH3)3], 0.21, 0.35 [s, 6 H, Si(CH3)2O], 0.89 (m, 1 H, C-5), 0.99 (m, 1 H, C-4), 1.14 (m, 1 H, C-3), 1.16-1.24 (m, 1 H, C-5), 1.38-1.57 (m, 3 H, 1 H of C-8 and C-9, 1 H of C-4), 1.65-1.84 (m, 2 H, C-8 and C-9), 1.90-2.02 (m, 1 H, C-3), 2.13-2.38 (m, 4 H, 1 H of C-7, 2 H of C-10 and 1 H of C-5a), 2.57 (m, 1 H, C-7), 2.72 (m, 1 H, C-5b), 4.19 (m, 1 H, C-2a). 13C NMR (50.3 MHz, CDCl3): δ = 0.00, 2.40 [Si(CH3)2O], 0.29 [Si(CH3)3], 22.16 (C-4), 23.78, 23.96 (C-8 and C-9), 26.72 (C-5), 31.05 (C-7), 32.46 (C-10), 33.57 (C-3), 36.86 (C-5a), 44.53 (C-5b), 77.63 (C-2a), 132.43, 134.72, 142.60, 143.52 (C=C). MS (70 eV): m/z (%) = 332 (61) [M+], 258(53) [C17H26Si+], 184(90) [C14H18Si+], 73 (100) [C3H9Si+]. Anal. Calcd for C19H32OSi2 (332.6): C, 68.61; H, 9.70. Found: C, 68.54; H, 9.63.