RSS-Feed abonnieren
DOI: 10.1055/s-2003-42090
N-Alkoxymethylation of Carboxamides Catalyzed by Brønsted Acids
Publikationsverlauf
Publikationsdatum:
15. Oktober 2003 (online)
Abstract
The reaction of carboxamides and dialkoxymethanes can be affected by sulfonic acids (methanesulfonic acid, p-toluenesulfonic acid, and Nafion-H SAC-13 silica nanocomposite) to yield N-alkoxymethylcarboxamides. Various types of N-alkyl- and N-aryl-substituted acetamides can be reacted in a one-step procedure to give the products in moderate to good yields.
Key words
acetals - amides - carbocations - catalysis - protecting groups
- 1
The Pesticide Manual
11th Ed.:
Tomlin CDS. British Crop Protection Council; Farnham: 1997. - 2
Olin JF. inventors; U.S. Patent 3442945. - 3
Vogel C, andAebi R. inventors; German Patent 2328340. ; Chem. Abstr. 1974, 80, 82440 - 4
Vértesi E,Huszák Gy,Pelyva J,Kovács M,Damján J,Kolonics Z,Kulcsár L,Sümegi E,Gy B,rfi Vass A,Lendvai L,Tömördi E,Szabó LJ,Nagy B,Nádasdy M,Haas A, andHung . inventors; Patent 177876. - 5
Venkov AP.Minkov MM.Lukanov LK. Synth. Commun. 1989, 19: 2133 - 6
Danikiewicz W.Szmigielski R. Synth. Commun. 2001, 31: 3047 - 7
Dardoize F.Gaudemar M.Goasdoue N. Synthesis 1977, 567 - 8
Lukyanov OA.Pokhvisneva GV.Ternikova TV. Izv. Akad. Nauk SSSR Ser. Khim. 1994, 1452 - 9
Alzeer J.Nock N.Wassner G.Masciadri R. Tetrahedron Lett. 1996, 37: 6857 - 10
Szmigielski R.Danikiewicz W. Synlett 2003, 372 - 11
Bicking JB.Kwong SF.Fisher MH.Nicholson WH. J. Med. Chem. 1965, 8: 95 - 12
Cauliez P.Rigo B.Fasseur D.Coutuier D. J. Heterocycl. Chem. 1991, 28: 1143 - 13
Horsley LH. Adv. Chem. Ser. 1952, 6: 64 -
16a
Ogata Y.Kawasaki A. In The Chemistry of the Carbonyl GroupZabicky J. Interscience; London: 1970. p.20 -
16b
Olah GA.Prakash GKS.Sommer J. Superacids Wiley-Interscience; New York: 1985. p.116 - 17
Stewart WE.Siddal TH. Chem. Rev. 1970, 70: 517
References
General Procedure: A mixture of the secondary amide
(7 mmol) and the dialkoxymethane (105 mmol) was refluxed in the presence of p-toluenesulfonic acid (1.4 mmol) under magnetic stirring for 5 h and the azeotrope of the corresponding alcohol formed and the original acetal was distilled off to shift the equilibrium for the formation of the N-alkoxy-methylated products (in the case of diethoxymethane, a 20-cm column with glass Fenske packing was used). After cooling the reaction mixture was neutralized with saturated aq NaHCO3, washed with NaCl solution and dried (Na2SO4). The unreacted acetal still present in the organic layer was removed by distillation at atmospheric pressure (in the case of diethoxymethane) or under reduced pressure (in the case of diisopropoxymethane and dibutoxymethane). The product was purified by column chromatography on silica gel using hexane-EtOAc mixture as the eluent.
Properties are given for compounds 3b, 8a, 9b, and 10a as representative examples of new compounds.
The presence of isomers (rotamers), the major and minor components in the case of compound 3b, is due to the hindered rotation about the carbonyl C-N bond in carboxamides.
[17]
Because of the conjugation between the lone pair of electrons of nitrogen and the carbonyl π-bond an electron delocalization occurs resulting in a significant π character of the C-N bond.
N
-Isobutyl-
N
-(isopropoxymethyl)acetamide (3b). 1H NMR (500 MHz, CDCl3): major component δ = 0.88 (d, 3
J = 6.6, 6 H, 2 × CH
3), 1.18 (d, 3
J = 6.0, 6 H, 2 × CH
3), 1.92-2.00 (m, 1 H, CH), 2.17 (s, 3 H, CH
3), 3.24 (d, 3
J = 7.4, 2 H, CH
2), 3.65 (m, 1 H, CH), 4.67 (s, 2 H, CH
2); minor component δ = 0.93 (m, 6 H, 2 × CH
3), 1.15 (m, 6 H, 2 × CH
3), 1.92-2.00 (m, 1 H, CH), 2.12 (s, 3 H, CH
3), 3.16 (d, 3
J = 7,6, 2 H, CH
2), 3.70 (m, 1 H, CH), 4.89 (s, 2 H, CH
2). 13C NMR (500 MHz, CDCl3): major component δ = 171.5 (CO), 77.8 (NCH2O), 68.8 (OCH), 53.4 (NCH2), 27.3 (CH2), 21.9 (CH2), 21.2 (CH3CO), 20.0 (2 × CH3); minor component δ = 171.5 (CO), 72.2 (NCH2O), 68.9 (OCH), 53.9 (NCH), 27.6 (CH2), 22.1, (2 × CH3), 21.7 (CH3CO), 19.9 (2 × CH3). Anal. Calcd for C10H21NO2: C, 64.13; H, 11.30; N, 7.48. Found: C, 63.72; H, 11.15; N, 7.17.
N
-(4-Isopropylphenyl)-
N
-(isopropoxymethyl)chloro-acetamide (8a). 1H NMR (500 MHz, CDCl3): δ = 1.21 (d, 3
J = 5.9, 6 H, 2 × CH
3), 1.26 (d, 3
J = 6.9, 6 H, 2 × CH
3), 2.92-2.97 (m, 1 H, CH), 3.87 (s, 2 H, CH
2Cl), 3.90-3.94 (m, 1 H, CH), 5.11 (s, 2 H, CH
2), 7.16 (d, 3
J = 8.1, 2 H, Ar-H), 7.28 (d, 3
J = 7.9, 2 H, Ar-H). 13C NMR (500 MHz, CDCl3): δ = 167.2 (CO), 149.7 (CPh), 137.5 (NPh) 128.0 (Ph), 127.8 (Ph), 75.9 (NCH2O), 69.8 (OCH), 42.2 (CH2Cl), 33.7 (PhCH), 23.8 (2 × CH3), 22.2 (2 × CH3). Anal. Calcd for C15H22NO2Cl: C, 63.48; H, 7.81; N, 4.94. Found: C, 63.38; H, 7.66; N, 4.53.
N
-(4-Bbromophenyl)-
N
-(butoxymethyl)acetamide (9b). 1H NMR (500 MHz, CDCl3): δ = 0.92 (t, 3
J = 7.4. 3 H, CH
3), 1.33-1.40 (m, 2 H, CH
2), 1.54-1.58 (m, 2 H, CH
2), 1.89 (s, 3 H, CH
3), 3.56 (s, 2 H, CH
2), 5.04 (s, 2 H, CH
2), 7.11 (d, 3
J = 8.4, 2 H, Ar-H), 7.54 (d, 3
J = 8.1, 2 H, Ar-H). 13C NMR (500 MHz, CDCl3): δ = 170.9 (CO), 141.3 (NPh), 132.6 (Ph), 129.7 (Ph), 122.0 (BrPh), 77.2 (NCH2O), 68.6 (OCH2), 31.6 (CH2), 22.6 (CH3CO), 19.2 (CH2), 13.7 (CH3). Anal. Calcd for C13H18NO2Br: C, 52.01; H, 6.04; N, 4.67. Found: C, 51.88; H, 5.93; N, 5.10.
N
-(4-Methoxylphenyl)-
N
-(ethoxymethyl)acetamide (10a). 1H NMR (500 MHz, CDCl3): δ = 1.21 (t, 3
J = 7.1, 3 H, CH
3), 1.87 (s, 3 H, CH
3), 3.64 (q, 3
J = 7.0, 2 H, CH
2), 3.83 (s, 3 H, CH
3), 5.05 (s, 2 H, CH
2), 6.92 (d, 3
J = 8.7, 2 H, Ar-H), 7.12 (d, 3
J = 8.7, 2 H, Ar-H). 13C NMR (500 MHz, CDCl3): δ = 171.7 (CO), 159.1 (CH3OPh), 135.0 (NPh), 129.1 (Ph), 114.7 (Ph), 77.1 (NCH2O), 64.0 (OCH2), 55.3 (CH3O), 22.7 (CH3CO), 15.0 (CH3). Anal. Calcd for C12H17NO3: C, 64.55; H, 7.67; N, 6.27. Found: C, 64.96; H, 7.63; N, 6.22.