RSS-Feed abonnieren
DOI: 10.1055/s-2003-42118
A Novel Catalytic Three-Component Synthesis (Kabachnick-Fields Reaction) of α-Aminophosphonates from Ketones
Publikationsverlauf
Publikationsdatum:
07. November 2003 (online)
Abstract
A novel and highly convenient catalytic variant of the synthesis of α-aminophosphonates on basis of the Kabachnik-Fields reaction [three-component reaction of ketones, diethylphosphite and either benzylamine (series a) of ammonium carbonate (series b)] in the presence of tetra-tert-butylphthalocyanines has been developed. This method affords α-aminophosphonates in acceptable yields for various ketones, including cyclic, sterically hindered and cage ketones. The unsubstituted α-aminophosphonic acids were also obtained from the corresponding esters of series b.
Key words
α-aminophosphonates - catalysis - tetra-tert-butylphthalocyanines - ketones - α-aminophosphonic acids
- 1
Sheridan RP. J. Chem. Inf. Comput. Sci. 2002, 42: 103 - 2
Grembecka J.Mucha A.Cierpicki T.Kafarski P. J. Med. Chem. 2003, 46: 2641 - 3
Bird J.De Mello RC.Harper GP.Hunter DJ.Karran EH.Markwell RE.Miles-Williams AJ.Rahman SS.Ward RW. J. Med. Chem. 1994, 37: 158 - 4
McLeod DA.Brinkworth RI.Ashley JA.Janda KD.Wirsching P. Bioorg. Med. Chem. Lett. 1991, 653 - 5
Moore JD.Sprott KT.Hanson PR. J. Org. Chem. 2002, 67: 8123 - 6
Liu W.Rogers CJ.Fisher AJ.Toney M. Biochemistry 2002, 41: 12320 - 7
Ranu BC.Hajra A.Jana U. Org. Lett. 1999, 1: 1141 - 8
Kim KS.Hurh EY.Youn JN.Park JI. J. Org. Chem. 1999, 64: 9272 - 9
Osipov SN.Artyushin OI.Kolomiets AF.Bruneau C.Dixneuf PH. Synlett 2000, 1031 - 10
Kabachnik MI.Medved’ TYa. Dokl. Akad. Nauk SSSR 1952, 689 ; Chem. Abstr. 1953, 47, 2724b - 11
Fields EK. J. Am. Chem. Soc. 1952, 74: 1528 - 12
Kuchar VP.Solodenko VA. Russ. Chem. Rev. 1987, 56: 1504 - 13
Cherkasov RA.Galkin VI. Russ. Chem. Rev. 1998, 67: 940 - 14
Kuchar VP.Svistunova NYu.Solodenko VA.Soloshonok VA. Russ. Chem. Rev. 1993, 62: 284 - 15
Uziel J.Genêt JP. Zh. Org. Khim. 1997, 33: 1605 - 16
LaPointe AM. J. Comb. Chem. 1999, 1: 101 - 17
Pudovik AN. Dokl. Akad. Nauk SSSR 1952, 83: 865 ; Chem. Abstr. 1953, 47, 4300 - 18
Laschat S.Kunz H. Synthesis 1992, 90 - 19
Quian C.Huang T. J. Org. Chem. 1998, 63: 4125 - 20
Manabe K.Kobayashi S. Chem. Commun. 2000, 669 - 21
Lee S.-gi.Park JH.Kang J.Lee JK. Chem. Commum. 2001, 1698 - 22
Tomilova LG.Rodionova GN.Lucyanetz EA. Koord. Chim. 1979, 5: 549 ; Chem. Abstr. 1979, 91, 221595d - 23
Kochmann W.Gunter E.Rothling T. Z. Chem. 1976, 16: 184 - 24
Fadel A.Tesson N. Eur. J. Org. Chem. 2000, 2153
References
General Procedure: To the solution of ketone (2 mmol) in solvent (3 mL, see Table [1] ), the benzylamine (2 mmol) or NH4(CO3)2 (6 mmol), anhyd MgSO4 (2 mmol) and Pht-1 [22] (10 mol%; 0.2 mmol) as a catalyst were added. The reaction mixture was heated for 3-4 h. Then diethylphosphite (2.4 mmol) was added. The reaction mixture was stirred for 12-24 h (see Table [1] ). The desiccant was then filtered and washed with 2 mL of CH2Cl2. The solvent was evaporated, and the residue was purified by chromatography on silica gel (eluent: CH2Cl2/MeOH = 20:1). In the case of steric hindered and cage ketones (adamantanone-2, camphor and norbornanone) 50% amine excess is required.
26All obtained compounds gave satisfactory elemental analyses with the range of C ±0.3%, H ±0.2%, N ±0.3%.
27IR spectra registration was carried out in condensed phase and in the solution in CCl4. There are stretches absorptions at 1200 cm-1 (P=O), 3200-3400 cm-1 (N-H and NH2) and 1180 cm-1 (C-O) in the IR spectra of given compounds. IR spectra of α-benzylaminophosphonates solutions were measured under the dilution forty times over. At that intensity and frequency the absorption bands of phosphonic and NH-associated groups did not change. This fact is evidence of the presence of intramolecular hydrogen bonds.
28Selected NMR data are presented below. Compound 1a. 1H NMR (400 MHz, CDCl3): δ = 0.88 (d, 3 H, CH3-cycl.), 1.34, 1.36 (2 t, 6 H, 2CH3), 1.53, 1.66, 1.87 (3 m, 9 H, cycl., NH), 3.92 (d, 3
J
PH = 3.2 Hz, 2 H, CH2-Bz), 4.16 (br m, 4 H, OCH2), 7.31, 7.38 (2 m, 5 H, arom.) ppm. 13C NMR (400 MHz, CDCl3): δ = 16.32 (d, 3
JCP = 4.6 Hz, CH3), 19.68 (d, J = 12.2 Hz, CH3, cycl.), 22.15, 25.38, 28.65, 34.09, 37.61 (cycl.), 46.84 (CH2-Bz), 56.30 (d, 1
JPC = 141.9 Hz, C-1), 61.83, 61.34 (2
JPC = 6.1 Hz, OCH2), 126.39, 127.78, 127.87, 141.09 (C arom.) ppm. 31P NMR (400 MHz, CDCl3): δ = 28.52 ppm. IR: 1240 (P=O), 3340, 3470 (NH) cm-1.
Compound 10a. 1H NMR (400 MHz, CDCl3): δ = 1.12, 1.27 (2 t, 6 H, 2CH3), 1.34, 1.64, 2.10, 2.24 (4 m, 14 H, cycl.), 2.75 (br s, 1 H, NH), 3.55 (A part AB syst, J
AB = 13.2 Hz, 1 H, CH2Bz), 3.83 (B part AB syst, JAB = 13.2 Hz, 1 H, CH2Bz), 3.80, 3.94, 4.10 (3 m, 4 H, OCH2), 7.27, 7.37 (2 m, 5 H, Ar) ppm. 13C NMR: δ = 16.36, 16.58 (2 d, 3
JCP = 6.3 Hz, CH3), 24.66, 25.29, 31.31, 34.13, 35.82, 44.18 (cycl.), 51.19 (d, J = 12.6 Hz, CH2-Bz), 60.12 (d, 1
JPC = 154.1 Hz, C-1, cycl.), 62.98, 63.15, (2
JPC = 7.8 Hz, OCH2), 127.29, 128.10, 128.52, 128.87 (C Ar). 31P NMR: δ = 22.5 ppm. IR: 1235 (P=O), 3260, 3360 (NH) cm-1. Anal. Calcd for C21H32NPO3(377): C, 66.84; H, 8.49; N, 3.71; P, 8.22. Found: C, 67.87; H, 7.50; N, 3.57.
Compound 10b. 1H NMR (CDCl3): δ = 1.36 (t, 6 H, 2CH3), 1.52, 1.74, 1.85, 2.13, (3 m, 10 H, cycl.), 2.35, 2.42 (2 m, 4 H cycl.), 3.01 (br s, 2 H, NH2), 4.21 (m, 4 H, OCH2), 7.27, 7.37 (2 m, 5 H, Ar) ppm. 13C NMR: δ = 16.08 (CH3), 26.13, 26.62, 31.66, 31.77, 33.27, 33.41, 38.77, 46.88 (cycl.), 62.19 (d, 2
JPC = 7.8 Hz, OCH2) ppm. 31P NMR: δ = 25.39 ppm. IR: 1245 (P=O), 3280 (NH2) cm-1.
Compound 12a. 1H NMR (CDCl3): δ = 1.05, 1.15 (2 m, 2 H, cycl.), 1.34, 1.35 (2 t, 6 H, 2CH3), 1.51, 1.88, 2.12, 2.26, 2.60 (5 m, 10 H, cycl.), 3.69 (A part AB syst., JAB = 13.4 Hz, 1 H, CH2Bz), 3.85 (B part AB syst, J
AB = 13.4 Hz, 1 H, CH2Bz), 3.99-4.23 (m, 4 H, OCH2), 7.21, 7.31, 7.37 (3 m, 5 H, Ar) ppm. 31P NMR: δ = 30.53, 31.44 (2 s, 2:1) ppm.
These signals are at 1.30-1.36 ppm (t, CH3) and at 4.10-4.20 ppm (complicated multiplet OCH2 2 J PH = 3.1 Hz).
30In 1H NMR spectra, the protons of CH3 groups were observed at δ = 1.15 and 1.30 ppm (2 t, 1:1). The diastereo-topic protons of two diastereotopic OCH2 groups appear as several multiplets at 3.80-4.50 ppm (2 J PH = 3.1 Hz): either four multiplets in ratio 1:1:1:1 or the superposition of three multiplets in ratio 1:2:1. In 1H NMR spectra of α-benzyl-aminophosphonates (series a) the signals of diastereotopic benzyl protons resonate at 3.50-3.70 ppm as two doublets (JAB = 12.8 Hz).
31There is the corresponding duplication of signals of the diastereotopic ethoxy group in 13C NMR spectra. In fact, CH3 groups resonate as two doublets at δ = 16.00 ppm (3 J PC = 6.3-6.5 Hz) and the OCH2 group as two doublets at 62.00-63.00 ppm (2 J PC = 8.6 Hz). These values are in agreement with available literature data. [24] The quaternary carbon atom resonates at δ = 50.00-60.00 ppm (1 J PC = 140-150 Hz). [27]