RSS-Feed abonnieren
DOI: 10.1055/s-2003-42450
Stereoselective Assembly of Three Different Carbonyl Components by Two Successive Aldol Reactions Using Group IVa and IVb Metals
Publikationsverlauf
Publikationsdatum:
23. Oktober 2003 (online)
Abstract
The rational design of a highly stereoselective E1+E2+A aldol-aldol route (using two different enolates E1,E2 and one aldehyde A) to tetrahydropyran-2,4-diols was based on screening group IVa and IVb metal bound enolate/aldolate hybrides in their potential to undergo aldol vs. retro-aldol reactions. Tin(IV) proved superior to all other metal ions since only a negligible amount of retro-aldol reaction is triggered. In the following, this property of tin(IV) was exploited to set up a highly stereoselective E1+E2+A route that allows the assembly of tetrahydropyran-2,4-diols with a wide variety of substituent patterns. The results obtained for open-chain enolates lends weight to the argument that a chair-boat transition state occurs in the last aldol step, while a boat-boat transition state may operate in the presence of cyclic enolates.
Key words
enolate - aldol reaction - tin(IV) - stereoselective assembly - domino process
-
1a
Claisen L. Justus Liebigs Ann. Chem. 1896, 291: 25 -
1b
Heathcock CH. In Modern Synthetic Methods Vol. 6:Scheffold R. VHCA; Basel: 1992. p.1 -
1c
Mekelburger HB.Wilcox CS. In Comprehensive Organic Synthesis Vol. 2:Trost BM. Pergamon Press; Oxford: 1991. p.99 -
1d
Mukaiyama T.Banno K.Narasaka K. J. Am. Chem. Soc. 1974, 96: 7503 -
1e
Mukaiyama T. Org. React. 1982, 28: 203 - 2
Evans DA.Fitch DM.Smith TE.Lee VJ. J. Am. Chem. Soc. 2000, 112: 10033 -
3a
Braun M. In Houben-Weyl, Methods of Organic Chemistry 4th ed. Vol. E21/3:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1996. p.1603 -
3b
Machajewski TD.Wong C.-H.Lerner RA. Angew. Chem. Int. Ed. 2000, 39: 1352 - 4
Tietze LF. Chem. Rev. 1996, 96: 115 - Aldol reaction as first step in a domino process:
-
5a
Galatsis P.Millan SD.Nechala P.Ferguson G. J. Org. Chem. 1994, 59: 6643 -
5b
Bodnar PM.Shaw JT.Woerpel KA. J. Org. Chem. 1997, 62: 5674 -
5c
Yang HW.Zhao CX.Romo D. Tetrahedron 1997, 53: 16471 -
5d
Kabalka GW.Tejedor D.Li N.-S.Malladi RR.Trotman S. J. Org. Chem. 1998, 63: 6438 -
5e
Lu L.Chang H.-Y.Fang J.-M. J. Org. Chem. 1999, 64: 843 -
5f
Delas C.Blacque O.Moise C. J. Chem. Soc., Perkin Trans. 1 2000, 2265 -
5g
Schneider C.Hansch M. Chem. Commun. 2001, 1218 -
5h
Wang X.Meng Q.Nation AJ.Leighton JL. J. Am. Chem. Soc. 2002, 124: 10672 -
5i
Oelgemöller M.Fukui K.Hesek D.Aoki F.Niki M.Inoue Y. Heterocycles 2002, 57: 741 - Aldol reaction as second step in a domino process:
-
6a
Arai T.Sasai H.Aoe K.Okamura K.Date T.Shibasaki M. Angew. Chem., Int. Ed. Engl. 1996, 35: 104 -
6b
Feringa BL.Pineschi M.Arnold LA.Imbos R.De Vries AHM. Angew. Chem. Int. Ed. 1997, 36: 2620 -
6c
Ono M.Nishimura K.Nagaoka Y.Tomioka K. Tetrahedron Lett. 1999, 40: 1509 -
6d
Huang X.Xie MH. Org. Lett. 2002, 4: 1331 -
6e
Langer P.Saleh NNR.Freifeld I. Chem. Commun. 2002, 168 -
6f
Bilodeau F.Dube L.Deslongchamps D. Tetrahedron 2003, 59: 2781 -
6g
Cauble DF.Gipson JD.Krische MJ. J. Am. Chem. Soc. 2003, 125: 1110 -
7a
Henne AL.Hinkamp PE. J. Am. Chem. Soc. 1954, 76: 5147 -
7b
Moore RA.Levine R. J. Org. Chem. 1964, 29: 1439 -
7c
Drakesmith FG.Stewart OJ.Tarrant P. J. Org. Chem. 1968, 33: 280 -
7d
Rollin P. Bull. Soc. Chem. Fr. 1973, 1509 -
7e
Dhingra MM.Tatta KR. Org. Magn. Reson. 1977, 9: 23 -
7f
Barba F.de la Fuente JL. J. Org. Chem. 1996, 61: 8662 -
8a
Schmittel M.Burghart A.Malisch W.Reising J.Söllner R. J. Org. Chem. 1998, 63: 396 -
8b
Schmittel M.Haeuseler A. J. Organomet. Chem. 2003, 661: 169 ; and literature therein -
9a
Schmittel M.Ghorai MK.Haeuseler A.Henn W.Koy T.Söllner R. Eur. J. Org. Chem. 1999, 2007 -
9b
Schmittel M.Ghorai MK. Synlett 2001, 1992 - 11
Schmittel M.Haeuseler A.Nilges T.Pfitzner A. Chem. Commun. 2003, 34 - 13
Yamamoto Y.Yamada J.-i. J. Chem. Soc., Chem. Commun. 1988, 802 -
14a
Mukaiyama T.Iwasawa N.Stevens RW.Haga T. Tetrahedron 1984, 40: 1381 -
14b
Mukaiyama T.Suzuki H.Yamada T. Chem. Lett. 1986, 915 -
15a To describe the relative configuration we have used the syn,anti nomenclature as recommended by Masamune:
Masamune S.Kaiho T.Garvey DS. J. Am. Chem. Soc. 1982, 104: 5521 -
15b
In order to have no nomenclature disparity between open and cyclic compounds the cyclic hemiacetals are stereochemically analysed as R4-C(OH)(OX)-CH(R5)-C(OH)R1-CH(R2)-CH(OX)-R3 (in a zig-zag arrangement) with OX being the acetal linkage
- 16
Koy T. PhD Thesis University of Siegen; Germany: 2002. - 17
Denmark SE.Stavenger RA.Wong K.-T. Tetrahedron 1998, 54: 10389 - 18
Heathcock CH.Buse CT.Kleschick WA.Pirrung MC.Sohn JE.Lampe J. J. Org. Chem. 1980, 45: 1066 -
19a
Yoshida Y.Hayashi R.Sumihara H.Tanabe Y. Tetrahedron Lett. 1997, 38: 8727 -
19b
Yoshida Y.Matsumoto N.Hamasaki R.Tanabe Y. Tetrahedron Lett. 1999, 40: 4227 - 20
Izutsu K. Acid-Base Dissociation Constants in Dipolar Aprotic Solvents Blackwell; Oxford: 1990. - 21
Zook HD.Miller JA. J. Org. Chem. 1971, 36: 1112 - 23
Allinger NL. J. Am. Chem. Soc. 1977, 99: 8127 - 24
Angelo JD. Tetrahedron 1976, 32: 2979 - 25
Spears GW.Caufield CE.Still WC. J. Org. Chem. 1987, 52: 1226 - 26
Harada T.Mukaiyama T. Chem. Lett. 1982, 467 - 27
Aoki Y.Oshima K.Utimoto K. Chem. Lett. 1995, 463
References
Schmittel, M.; Haeuseler, A.; Henn, W.; Ghorai, M. K.; Koy, T. manuscript in preparation.
12Engelen, B.; Deiseroth, H.-J.; Panthöfer, M.; Schlirf, J. private communication.
22Proven also by x-ray structure analysis: Deiseroth, H.-J.; Schlirf, J. personal communication.