Subscribe to RSS
DOI: 10.1055/s-2003-42475
An Expedient Synthesis of Cationic Rhodamine Fluorescent Probes Suitable for Conjugation to Amino Acids and Peptides
Publication History
Publication Date:
21 November 2003 (online)
Abstract
Rhodamine 19 benzyloxycarbonylmethyl ester bromide 8 and rhodamine 19 4-chloromethyl-1-phenylmethyl ester chloride 12 act as precursors to cationic fluorescent probes. Molecules containing free amine or carboxylate functional groups, respectively, can be attached in a one-step procedure, yielding the desired probes without the need for chromatographic purification. As a proof of concept the method was applied to the attachment of amino acid and dipeptide residues through either the N- or C-termini. The precursor molecules 8 and 12 are readily synthesized from the inexpensive, commercially available dye rhodamine 6G.
Key words
fluorescent probes - rhodamines - amino acid derivatives - peptides
- 1
Valeur B. Molecular Fluorescence: Principles and Applications Wiley-VCH; Weinheim: 2002. -
2a
Haugland RP. Handbook of Fluorescent Probes and Research Products Molecular Probes, Inc.; Eugene: 2001. and references cited therein -
2b
Probe Design and Chemical Sensing, In Topics in Fluorescence Spectroscopy
Vol. 4:
Lakowicz JR. Plenum Press; New York: 1994. -
2c
Scala-Valéro C.Doizi D.Guillaumet G. Tetrahedron Lett. 1999, 40: 4803 -
3a
Rahavendran SV.Karnes HT. Anal. Chem. 1996, 68: 3763 -
3b
Soper SA.McGown LB.Warner IM. Anal. Chem. 1994, 66: 428R -
4a
Finney NS. Curr. Opin. Drug Discovery Dev. 1998, 1: 98 -
4b
Lescrinier T.Hendrix C.Kerremans L.Rozenski J.Link A.Samyn B.Aerschot AV.Lescrinier E.Eritja R.Beeumen JV.Herdewijn P. Chem.-Eur. J. 1998, 4: 425 -
5a
Mitchison TJ.Sawin KE.Theriot JA.Gee K.Mallavarapu A. Caged Compounds, In Methods in Enzymology Vol. 291:Marriott G. Academic Press; New York: 1998. p.63 -
5b
Boturyn D.Boudali A.Constant J.-F.Defrancq E.L’homme J. Tetrahedron 1997, 53: 5485 -
5c
Harapanhalli RS.Roy AM.Adelstein SJ.Kassis A. J. Med. Chem. 1998, 41: 2111 -
5d
Mayer A.Neuenhofer S. Angew. Chem., Int. Ed. Engl. 1994, 33: 1044 -
5e
Kojima H.Hirotani M.Urano Y.Kikuchi K.Higuchi T.Nagano T. Tetrahedron Lett. 2000, 41: 69 - 6
Davie E.Morris JH.Smith E. Org. Mass Spectrom. 1974, 763 - 7
Cai SX.Zhang H.-Z.Guastella J.Drewe J.Yang W.Weber E. Bioorg. Med. Chem. Lett. 2001, 11: 39 -
8a
Bain AJ.Chandna P.Butcher G.Bryant J. J. Chem. Phys. 2000, 112: 10435 -
8b
Byassee TA.Chan WC.Nie S. Anal. Chem. 2000, 72: 5606 -
8c
Fang X.Tan W. Anal. Chem. 1999, 71: 3101 -
8d
Mandala M.Serck-Hanssen G.Martino G.Helle KB. Anal. Biochem. 1999, 274: 1 -
8e
Nie S.Chiu DT.Zare RN. Science 1994, 266: 1018 -
8f
Matsumoto Y.Sasaoka N.Tsuchida T.Fujiwara T.Nagao S.Ohmoto T. J. Neurooncol. 1992, 13: 217 -
8g
Choi KJ.Turkevich LA.Loza R. J. Phys. Chem. 1988, 92: 2248 -
8h
Kuzela S.Joste V.Nelson BD. Eur. J. Biochem. 1986, 154: 553 - 9
Heilporn S.Broeders F.Daloze D.Braekman JC.Boeynaems JM. Bull. Soc. Chim. Belg. 1994, 103: 309 - 10
Gallo EA.Gellman SH. J. Am. Chem. Soc. 1993, 115: 9774 - 11 For a similar linking strategy for peptides to fluoresceins and their application as fluorescent reporters, see:
Chen C.-A.Yeh R.-H.Lawrence DS. J. Am. Chem. Soc. 2002, 124: 3840 -
12a
Adamczyk M.Grote J. Bioorg. Med. Chem. Lett. 2000, 10: 1539 -
12b
Cincotta L, andFoley JW. inventors; U.S. Patent 4,290,955. See also: -
13a
Mayer U, andOberlinner A. inventors; U.S. Patent 4,647,675. -
13b
Arnost MJ,Meneghini FA,Palumbo PS, andStroud SG. inventors; U.S. Patent 4,900,686. -
13c
Mayer U, andOberlinner A. inventors; U.S. Patent 4,935,059. -
13d
Haugland RP,Singer VL, andYue ST. inventors; U.S. Patent 6,399,392. - 14
Wakamiya T.Saruta K.Yasuoka J.-I.Kusumoto S. Bull. Chem. Soc. Jpn. 1995, 68: 2699 - 18
Parker CA. Photoluminescence of Solutions Elsevier; Amsterdam: 1968. - 19
Kohno Y.Narasaka K. Bull. Chem. Soc. Jpn. 1995, 68: 322
References
The relative quantum yields at 495 nm of derivatives 10, 13 and 15 were 1.26, 1.03 and 0.95 × that of rhodamine 6G respectively (see Ref. [18] for the method used).
16The crystals of compound 14 were obtained by crystallization from Et2O-EtOH: C41H46IN3O7, M = 819.71, triclinic, space group P-1, a = 12.6230(2), b = 13.4724(3), c = 13.5600(3) Å, α = 101.865(1), β = 107.003(1), γ = 113.602(1)°, V = 1878.77(7) Å3, Z = 2, Dc = 1.449 gcm-3, µ = 0.907 mm-1, F(000) = 844, crystal dimensions 0.35 × 0.32 × 0.28 mm3. The intensities of 28224 reflections were measured on a Nonius Kappa-CCD diffractometer (MoKα radiation, T = 100.0(1) K, 4.19 < θ < 30.48, 10822 unique reflections). The structure was solved and refined using the SHELXTL package (see Ref. [17] ). Non-hydrogen atoms were assigned anisotropic thermal parameters. Hydrogen atoms were included in calculated positions and treated as riding atoms. The refinement which included 469 parameters, converged with R1[I>2σ(I)] = 0.0375 (for 8449 reflections with I>2σ(I)) and wR2 (all unique data) = 0.0970. Atomic coordinates and further crystallographic details have been deposited at the Cambridge Crystallographic Data Centre, deposition number CCDC-191818, and copies of this data can be obtained in application to CCDC, 12, Union Road, Cambridge CB2 1EZ, UK. [Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk].
17Sheldrick, G. M. SHELXTL/PC Version 5.1, Windows NT Version, Bruker AXS Inc., Madison, USA.