Abstract
Rhodamine 19 benzyloxycarbonylmethyl ester bromide 8 and rhodamine 19 4-chloromethyl-1-phenylmethyl ester chloride 12 act as precursors to cationic fluorescent probes. Molecules containing free amine or carboxylate functional groups, respectively, can be attached in a one-step procedure, yielding the desired probes without the need for chromatographic purification. As a proof of concept the method was applied to the attachment of amino acid and dipeptide residues through either the N - or C -termini. The precursor molecules 8 and 12 are readily synthesized from the inexpensive, commercially available dye rhodamine 6G.
Key words
fluorescent probes - rhodamines - amino acid derivatives - peptides
References
1
Valeur B.
Molecular Fluorescence: Principles and Applications
Wiley-VCH;
Weinheim:
2002.
2a
Haugland RP.
Handbook of Fluorescent Probes and Research Products
Molecular Probes, Inc.;
Eugene:
2001. and references cited therein
2b
Probe Design and Chemical Sensing, In Topics in Fluorescence Spectroscopy
Vol. 4:
Lakowicz JR.
Plenum Press;
New York:
1994.
2c
Scala-Valéro C.
Doizi D.
Guillaumet G.
Tetrahedron Lett.
1999,
40:
4803
3a
Rahavendran SV.
Karnes HT.
Anal. Chem.
1996,
68:
3763
3b
Soper SA.
McGown LB.
Warner IM.
Anal. Chem.
1994,
66:
428R
4a
Finney NS.
Curr. Opin. Drug Discovery Dev.
1998,
1:
98
4b
Lescrinier T.
Hendrix C.
Kerremans L.
Rozenski J.
Link A.
Samyn B.
Aerschot AV.
Lescrinier E.
Eritja R.
Beeumen JV.
Herdewijn P.
Chem.-Eur. J.
1998,
4:
425
5a
Mitchison TJ.
Sawin KE.
Theriot JA.
Gee K.
Mallavarapu A.
Caged Compounds, In Methods in Enzymology
Vol. 291:
Marriott G.
Academic Press;
New York:
1998.
p.63
5b
Boturyn D.
Boudali A.
Constant J.-F.
Defrancq E.
L’homme J.
Tetrahedron
1997,
53:
5485
5c
Harapanhalli RS.
Roy AM.
Adelstein SJ.
Kassis A.
J. Med. Chem.
1998,
41:
2111
5d
Mayer A.
Neuenhofer S.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1044
5e
Kojima H.
Hirotani M.
Urano Y.
Kikuchi K.
Higuchi T.
Nagano T.
Tetrahedron Lett.
2000,
41:
69
6
Davie E.
Morris JH.
Smith E.
Org. Mass Spectrom.
1974,
763
7
Cai SX.
Zhang H.-Z.
Guastella J.
Drewe J.
Yang W.
Weber E.
Bioorg. Med. Chem. Lett.
2001,
11:
39
8a
Bain AJ.
Chandna P.
Butcher G.
Bryant J.
J. Chem. Phys.
2000,
112:
10435
8b
Byassee TA.
Chan WC.
Nie S.
Anal. Chem.
2000,
72:
5606
8c
Fang X.
Tan W.
Anal. Chem.
1999,
71:
3101
8d
Mandala M.
Serck-Hanssen G.
Martino G.
Helle KB.
Anal. Biochem.
1999,
274:
1
8e
Nie S.
Chiu DT.
Zare RN.
Science
1994,
266:
1018
8f
Matsumoto Y.
Sasaoka N.
Tsuchida T.
Fujiwara T.
Nagao S.
Ohmoto T.
J. Neurooncol.
1992,
13:
217
8g
Choi KJ.
Turkevich LA.
Loza R.
J. Phys. Chem.
1988,
92:
2248
8h
Kuzela S.
Joste V.
Nelson BD.
Eur. J. Biochem.
1986,
154:
553
9
Heilporn S.
Broeders F.
Daloze D.
Braekman JC.
Boeynaems JM.
Bull. Soc. Chim. Belg.
1994,
103:
309
10
Gallo EA.
Gellman SH.
J. Am. Chem. Soc.
1993,
115:
9774
11 For a similar linking strategy for peptides to fluoresceins and their application as fluorescent reporters, see: Chen C.-A.
Yeh R.-H.
Lawrence DS.
J. Am. Chem. Soc.
2002,
124:
3840
12a
Adamczyk M.
Grote J.
Bioorg. Med. Chem. Lett.
2000,
10:
1539
12b Cincotta L, and Foley JW. inventors; U.S. Patent 4,290,955. See also:
13a Mayer U, and Oberlinner A. inventors; U.S. Patent 4,647,675.
13b Arnost MJ, Meneghini FA, Palumbo PS, and Stroud SG. inventors; U.S. Patent 4,900,686.
13c Mayer U, and Oberlinner A. inventors; U.S. Patent 4,935,059.
13d Haugland RP, Singer VL, and Yue ST. inventors; U.S. Patent 6,399,392.
14
Wakamiya T.
Saruta K.
Yasuoka J.-I.
Kusumoto S.
Bull. Chem. Soc. Jpn.
1995,
68:
2699
15 The relative quantum yields at 495 nm of derivatives 10 , 13 and 15 were 1.26, 1.03 and 0.95 × that of rhodamine 6G respectively (see Ref.
[18 ]
for the method used).
16 The crystals of compound 14 were obtained by crystallization from Et2 O-EtOH: C41 H46 IN3 O7 , M = 819.71, triclinic, space group P-1, a = 12.6230(2), b = 13.4724(3), c = 13.5600(3) Å, α = 101.865(1), β = 107.003(1), γ = 113.602(1)°, V = 1878.77(7) Å3 , Z = 2, Dc = 1.449 gcm-3 , µ = 0.907 mm-1 , F(000) = 844, crystal dimensions 0.35 × 0.32 × 0.28 mm3 . The intensities of 28224 reflections were measured on a Nonius Kappa-CCD diffractometer (MoKα radiation, T = 100.0(1) K, 4.19 < θ < 30.48, 10822 unique reflections). The structure was solved and refined using the SHELXTL package (see Ref.
[17 ]
). Non-hydrogen atoms were assigned anisotropic thermal parameters. Hydrogen atoms were included in calculated positions and treated as riding atoms. The refinement which included 469 parameters, converged with R 1[I>2σ(I)] = 0.0375 (for 8449 reflections with I>2σ(I)) and wR 2 (all unique data) = 0.0970. Atomic coordinates and further crystallographic details have been deposited at the Cambridge Crystallographic Data Centre, deposition number CCDC-191818, and copies of this data can be obtained in application to CCDC, 12, Union Road, Cambridge CB2 1EZ, UK. [Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk].
17 Sheldrick, G. M. SHELXTL/PC Version 5.1, Windows NT Version, Bruker AXS Inc., Madison, USA.
18
Parker CA.
Photoluminescence of Solutions
Elsevier;
Amsterdam:
1968.
19
Kohno Y.
Narasaka K.
Bull. Chem. Soc. Jpn.
1995,
68:
322