Zusammenfassung
Die Hyperhomocysteinämie resultiert aus einem gestörten Methioninmetabolismus. Leichte und mäßige Hyperhomocysteinämien sind häufig auf ein Vitamindefizit an Folsäure, Vitamin B12 und/oder B6 zurückzuführen. Die seltenen schweren Hyperhomocysteinämien beruhen auf homozygoten Enzymmutationen.
Die Hyperhomocysteinämie ist ein unabhängiger Risikofaktor für arteriosklerotische Erkrankungen. Viele neuere Studien zeigen, dass Homocystein auch mit geburtshilflichen Erkrankungen wie Präeklampsie, HELLP-Syndrom, habituellen Aborten und angeborenen kindlichen Fehlbildungen wie Neuralrohrdefekten assoziiert ist.
Beim habituellen Abort wurde die Assoziation sowohl mit der Folatdefizienz als auch mit der Hyperhomocysteinämie beschrieben. Zur Prophylaxe kindlicher Neuralrohrdefekte wird eine Supplementation mit Folsäure spätestens bei der Planung einer Schwangerschaft empfohlen. Die prophylaktische Wirksamkeit einer Folsäuresupplementierung und tierexperimentelle Untersuchungen weisen auf die Bedeutung des Homocysteins für die Pathogenese von Neuralrohrdefekten hin.
Bei der Präeklampsie wird angenommen, dass oxidativer Stress an der Pathogenese der Endotheldysfunktion beteiligt ist. Sowohl in der präeklamptischen Plazenta als auch im mütterlichen Plasma wurden erhöhte Konzentrationen stabiler Oxidationsprodukte und verminderte Antioxidanzienkonzentrationen gefunden. Homocystein kann oxidativen Stress auslösen und direkt zytotoxisch auf Endothelzellen wirken. In der normalen Schwangerschaft sinkt die Plasmahomocysteinkonzentration. Bei der Präeklampsie wurden in mehreren, jedoch nicht in allen Studien erhöhte Plasmahomocysteinkonzentrationen im Vergleich zu normalen Schwangerschaften gefunden. Der Plasmahomocysteinanstieg bei Präeklampsie ist relativ niedrig und kann auf der Nierenbeteiligung und einer Reaktion des Methioninstoffwechsels auf oxidativen Stress beruhen. Daher ist eine direkte ätiologische Bedeutung des Homocysteins für die Endotheldysfunktion bei der Präeklampsie nicht sicher.
Abstract
Hyperhomocysteinemia is a result of disturbed methionine metabolism. Mild and moderate forms are commonly caused by deficiency of folic acid and vitamins B12 and B6 . Rare severe forms of hyperhomocysteinemia are due to homozygotic enzyme mutations. Hyperhomocysteinemia is an independent risk factor for the development of atherosclerotic vascular disease. Recent studies also indicate an association with preeclampsia, HELLP syndrome, recurrent early pregnancy loss, and congenital anomalies such as neural tube defects. Several studies of recurrent early pregnancy loss have documented an association with folic acid deficiency and hyperhomocysteinemia. Folic acid supplementation to prevent neural tube defects is recommended for women attempting to conceive (and during early pregnancy). The efficacy of folic acid supplementation and the results of animal studies support a role of homocysteine in the pathogenesis of neural tube defects.
The pathogenesis of endothelial dysfunction in preeclampsia involves oxidative stress. Elevated levels of stable oxidation products and decreased levels of antioxidants are found in the preeclamptic placenta and maternal plasma. Homocysteine induces oxidative stress and is toxic to endothelial cells. Plasma homocysteine levels decrease during normal pregnancy. Several studies have reported increased plasma homocysteine levels in pregnancies complicated by preeclampsia, but this has been disputed. The increase of plasma homocysteine in preeclampsia is small and may result from disturbed renal function and alterations of methionine metabolism due to oxidative stress. Thus it is not clear whether hyperhomocysteinemia is involved in the etiology of preeclampsia.
Schlüsselwörter
Homocystein - Neuralrohrdefekte - Schwangerschaftskomplikationen - Folsäure - oxidativer Stress
Key words
Homocysteine - neural tube defects - pregnancy complications - folic acid - oxidative stress
Literatur
1
Welch G N, Loscalzo J.
Homocystein and atherothrombosis.
New Engl J Med.
1998;
338
1042-1050
2
Herrmann W.
The importance of hyperhomocysteinemia as a risk factor for diseases: an overview.
Clin Chem Lab Med.
2001;
39
666-674
3
Dekker G A, de Vries J IP, Doelitzsch P M, Huijgens P C, von Blomberg B ME, Jakobs C, van Geijn H P.
Underlying disorders associated with severe early-onset preeclampsia.
Am J Obstet Gynecol.
1995;
173
1042-1048
4
Cotter A M, Molloy A M, Scott J M, Daly S F.
Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe preeclampsia.
Am J Obstet Gynecol.
2001;
185
781-785
5
Nelen W LDM.
Hyperhomocysteinaemia and human reproduction.
Clin Chem Lab Med.
2001;
39
758-763
6
Powers R W, Evans R W, Majors A K, Ojimba J I, Ness R B, Crombleholme W R, Roberts J M.
Plasma homocysteine concentration is increased in preeclampsia and is associated with evidence of endothelial activation.
Am J Obstet Gynecol.
1998;
179
1605-1611
7
Meister A, Anderson M E.
Glutathione.
Ann Rev Biochem.
1983;
52
711-760
8
Wright C E, Tallan H H, Lin Y Y.
Taurine: biological update.
Ann Rev Biochem.
1986;
55
427-453
9
Finkelstein J D.
Pathways and regulation of homocysteine metabolism in mammals.
Semin Thromb Hemost.
2000;
26
219-225
10
Finkelstein J D.
The metabolism of homocysteine: pathways and regulation.
Eur J Pediatr.
1998;
157
S40-S44
11
Brattstrom L, Israelsson B, Lindgärde F, Hultberg B.
Higher total plasma homocysteine in vitamin B12 deficiency than in heterozygosity for homocysteinuria due to β-synthase deficiency.
Metabolism.
1988;
37
175-178
12
Kang S S, Wong P WK, Norusis M.
Homocysteinemia due to folate deficiency.
Metabolism.
1987;
36
458-462
13
Stabler S P, Marcell P D, Podell E R, Allen R H, Savage D G, Lindenbaum J.
Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry.
J Clin Invest.
1988;
81
466-474
14
Herrmann W, Obeid R, Schorr H, Geisel J.
Effect of MTHFR polymorphism on homocysteine concentration in dependence on folate and vitamin B-12 status.
Clin Chem Lab Med.
2002;
40
A41
15
Stein J H, McBride P E.
Hyperhomocysteinemia and atherosclerotic vascular disease.
Arch Intern Med.
1998;
158
1301-1306
16
Boers G H, Fowler B, Smals A G, Trijbels F J, Leermakers A I, Kleijer W J, Kloppenborg P W. et al .
Improved identification of heterozygotes for homocysteinuria due to cystathionine synthetase deficiency by the combination of methionine loading and enzyme determination in cultured fibroblast.
Hum Genet.
1985;
69
164-169
17
Brattstrom L, Wilcken D E, Ohrvik J, Brudin L.
Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease, the result of a metaanalysis.
Circulation.
1998;
98
2520-2526
18
Molloy A M, Daly S, Mills L, Kirke P N, Whitehead A S, Ramsbottom D, Conley M R, Weir D G, Scott J M.
Thermolabile variant of 5, 10-methylenetetrahydrofolate reductase associated with low red-cell folates: Implications for folate intake recommendations.
Lancet.
1997;
349
1591-1593
19
Friso S, Choi S W, Girelli D, Mason J B, Dolnikowski G G, Bagley P J, Olivieri O, Jacques P F, Rosenberg I H, Corrocher R, Selhub J.
A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status.
Proc Natl Acad Sci USA.
2002;
99
5606-5611
20
Blount B C, Mack M M, Wehr C M, MacGregor J T, Hiatt R A, Wang G, Wickramasinghe S N, Everson R B, Ames B N.
Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage.
Proc Natl Acad Sci USA.
1997;
94
3290-3295
21
Duthie S J, Narayanan S, Brand G M, Pirie L, Grant G.
Impact of folate deficiency on DNA stability.
J Nutr.
2002;
132
2444S-2449S
22
Carson N AJ, Neill D W.
Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland.
Arch Dis Child.
1962;
37
505-513
23 Mudd S H, Levy H L, Skovby F. Disorders of transsulfuration. Scriver CR, Beaudet AL, Sly WS, Valle D The Metabolic and Molecular Bases of Inherited Disease. 7th ed. Vol. 1. New York; McGraw-Hill 1995: 1279-1327
24
Rees M M, Rodgers G M.
Homocysteinemia. Association of a metabolic disorder with vascular disease and thrombosis.
Thromb Res.
1993;
71
337-359
25
Savage D J, Lindenbaum J, Stabler S P, Allen R H.
Sensitivity of serum methylmalonic acid and total homocysteine determinants for diagnosing cobalamin and folate deficiencies.
Am J Med.
1994;
96
239-246
26
McCully K S.
Homocysteine and vascular disease.
Nat Med.
1996;
2
386-389
27
Mayer E L, Jacobsen D W, Robinson K.
Homocysteine and coronary atherosclerosis.
J Am Coll Cardiol.
1996;
27
517-527
28
Herrmann W, Quast S, Ellgass A, Wolter K, Kiessig S T, Molinari E, Riegel W.
An increased serum level of free apo(a) in renal patients is more striking than that of Lp(a) and is influenced by homocysteine.
Nephron.
2000;
85
41-49
29
Herrmann W.
Homocysteine, cystathionine, methylmalonic acid and B-vitamins in patients with renal disease.
Clin Chem Lab Med.
2001;
39
739-746
30
Ueland P M, Refsum H.
Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy.
J Lab Clin Med.
1989;
114
473-501
31 Ueland P M, Refsum H, Brattstrom I. Plasma homocysteine and cardiovascular disease. Francis RB Jr Atherosclerotic Cardiovascular Disease, Hemostasis, and Endothelial Function. New York; Marcel Dekker 1992: 183-236
32
Thambyrajah J, Townend J N.
Homocysteine and atherothrombosis - mechanisms for injury.
Eur Heart J.
2000;
21
967-974
33
Stanger O, Weger M, Renner W, Konetschny R.
Vascular dysfunction in hyperhomocysteinemia. Implications for atherothrombotic disease.
Clin Chem Lab Med.
2001;
39
725-733
34
Toborek M, Kopieczna-Grzebieniak E, Drozdz M, Wieczorek M.
Increased lipid peroxidation as a mechanism of methionine-induced atherosclerosis in rabbits.
Atherosclerosis.
1995;
115
217-224
35
Lentz S R, Sadler J E.
Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.
J Clin Invest.
1991;
88
1906-1914
36
Rodgers G M, Kane W H.
Activation of endogenous factor V by a homocysteine-induced vascular cell activator.
J Clin Invest.
1986;
77
1909-1916
37
Fryer R H, Wilson B D, Gubler D B, Fitzgerald L A, Rodgers G M.
Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells.
Arterioscler Thromb.
1993;
13
1327-1333
38
Hajjar K A.
Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor.
J Clin Invest.
1993;
91
2873-2879
39
Nishinanga M, Ozawa T, Shimada K.
Homocyst(e)ine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells.
J Clin Invest.
1993;
92
1381-1386
40
Kirchner T, Sinzinger H.
Homocysteine - relevant for atherogenesis?.
Wien Klin Wochenschr.
2000;
112
523-532
41
Aubard Y, Darodes N, Cantaloube M.
Hyperhomocysteinemia and pregnancy - review of our present understanding and therapeutic implications.
Eur J Obstet Gynecol Reprod Biol.
2000;
93
157-165
42
Panganamala R V, Karpen C W, Merola A J.
Peroxide mediated effects of homocysteine on arterial prostacyclin synthesis.
Prostaglandins Leukot Med.
1986;
22
349-356
43
Cooke J P.
Does ADMA cause endothelial dysfunction?.
Arterioscler Thromb Vasc Biol.
2000;
20
2032-2037
44
Böger R H, Bode-Böger S M, Sydow K, Heistad D D, Lentz S R.
Plasma concentrations of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocysteinemia or hypercholesterolemia.
Arterioscler Thromb Vasc Biol.
2000;
20
1557-1564
45
Stühlinger M C, Tsao P S, Her J H, Kimoto M, Balint R F, Cooke J P.
Homocysteine impairs the nitric oxide synthase pathway. Role of asymmetric dimethylarginine.
Circulation.
2001;
104
2569-2575
46
Beckman J S, Koppenol W H.
Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly.
Am J Physiol.
1996;
271
C1424-C1437
47
Yamamoto M, Hara H, Adachi T.
Effects of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface.
FEBS Letters.
2000;
486
159-162
48
Poddar R, Sivasubramanian N, DiBello P M, Robinson K, Jacobsen D W.
Homocysteine induces expression and secretion of monocyste chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells. Implications for vascular disease.
Circulation.
2001;
103
2717-2723
49
Nauck M, Bisse E, Nauck M, Wieland H.
Pre-analytical conditions affecting the determination of the plasma homocysteine concentration.
Clin Chem Lab Med.
2001;
39
675-680
50
Clark S, Youngman L D, Sullivan J, Peto R, Collins R.
Stabilization of homocysteine in unseparated blood over several days: a solution for epidemiological studies.
Clin Chem.
2003;
49
518-520
51
Leino A.
Fully automated measurement of total homocysteine in plasma and serum on the Abbott IMx analyzer.
Clin Chem.
1999;
45
569-571
52
Walker M C, Smith G N, Perkins S L, Keely E J, Garner P R.
Changes in homocysteine levels during normal pregnancy.
Am J Obstet Gynecol.
1999;
180
660-664
53
Murphy M M, Scott J M, McPartlin J M, Fernandez-Ballart J D.
The pregnancy-related decrease in fasting plasma homocysteine is not explained by folic acid supplementation, hemodilution or a decrease in albumin in a longitudinal study.
Am J Clin Nutr.
2002;
76
614-619
54
Vollset S E, Refsum H, Irgens L M, Emblem B M, Tverdal A, Gjessing H K, Monsen A LB, Ueland P M.
Plasma total homocysteine, pregnancy complications, and adverse outcomes: the Hordaland homocysteine study.
Am J Clin Nutr.
2000;
71
962-968
55
Hasbargen U, Lohse P, Thaler C J.
The number of dichorionic twin pregnancies is reduced by the common MTHFR 677 C → T mutation.
Hum Reprod.
2000;
15
2659-2662
56
Czeizel A E, Metneki J, Dudas I.
The higher rate of multiple births after periconceptional multivitamin supplementation: an analysis of causes.
Acta Genet Med Gemello (Roma).
1994;
43
175-184
57
Werler M M, Cragan J D, Wasserman C R, Shaw G M, Erickson J D, Mitchell A A.
Multivitamin supplementation and multiple births.
Am J Med Genet.
1997;
71
93-96
58
Ericson A, Kallen B, Aberg A.
Use of multivitamins and folic acid in early pregnancy and multiple births in Sweden.
Twin Res.
2001;
4
63-66
59
Li Z, Gindler J, Wang H, Berry R J, Li S, Correa A, Zheng J C, Erickson J D, Wang J.
Folic acid supplements during early pregnancy and likelihood of multiple births: a population-based cohort study.
Lancet.
2003;
361
380-384
60
Hibbard B M.
The role of folic acid in pregnancy.
J Obstet Gynecol Br Cwth.
1964;
71
529-541
61
Steegers-Theunissen R PM, Boers G HJ, Blom H J, Trijbels F JM, Eskes T KAB.
Hyperhomocysteinemia and recurrent spontaneous abortion or abruption placentae.
Lancet.
1992;
339
1122-1123
62
Wouters M B, Boers G H, Blom H J, Trijbels F J, Thomas C M, Born G F, Steegers-Theunissen R P, Eskes T K.
Hyperhomocysteinemia: a risk factor in women with unexplained recurrent early pregnancy loss.
Fertil Steril.
1993;
60
820-825
63
Nelen W L, Blom H J, Steegers E A, Thomas C M, Eskes T K.
Homocysteine and folate levels as risk factors for recurrent early pregnancy loss.
Obstet Gynecol.
2000;
95
519-524
64
Nelen W L, Blom H J, Steegers E A, den Heiher M, Eskes T K.
Hyperhomocysteinemia and recurrent pregnancy loss: a meta-analysis.
Fertil Steril.
2000;
74
1196-1199
65
Quere I, Bellet H, Hoffet M, Janbon C, Mares P, Gris J C.
A woman with five consecutive fetal deaths: case report and retrospective analysis of hyperhomo-cysteinemia prevalence in 100 consecutive women with recurrent miscarriages.
Fertil Steril.
1998;
69
152-154
66
Coumans A BC, Huijgens P C, de Vreis J IP, van Pampus M G, Dekker G A.
Haemostatic and metabolic abnormalities in women with unexplained recurrent abortion.
Hum Reprod.
1999;
14
211-214
67
Blumenfeld Z, Brenner B.
Thrombophilia-associated pregnancy wastage.
Fertil Steril.
1999;
72
765-774
68
Brenner B, Blumenfeld Z.
Thrombophilia and fetal loss.
Blood Reviews.
1997;
11
72-79
69
Steegers-Theunissen R PM, Boers G HJ, Trijbels F JM.
Neural tube defects and derangement of homocysteine metabolism.
N Engl J Med.
1991;
324
199-200
70
Steegers-Theunissen R PM, Boers G HJ, Trijbels F JM, Finkelstein J D, Blom H J, Thomas C MG, Borm G F, Wouters M GAJ, Eskes T KAB.
Maternal hyperhomocysteinemia: a risk factor for neural-tube defects?.
Metabolism.
1994;
43
1475-1480
71
Mills J L, McPartlin J M, Kirke P N, Lee Y J, Conley M R, Weir D G.
Homocysteine metabolism in pregnancies complicated by neural-tube defects.
Lancet.
1995;
345
149-151
72
Van der Put N MJ, Thomas C M, Eskes T K, Trijbels F J, Steegers-Theunissen R P, Mariman E C.
Alterated folate and vitamin B12 metabolism in families with spina bifida offspring.
Q J Med.
1997;
90
505-510
73
Vitamin Study Research Group M RC.
Prevention of neural tube defects: results of the medical research council vitamin study.
Lancet.
1991;
338
131-137
74
Czeizel A E, Dudas I.
Prevention of the first occurrence of neural tube defects by periconceptional vitamin supplementation.
N Engl J Med.
1992;
327
1832-1835
75
Berry R J, Li Z, Erickson J D, Li S, Moore C A, Wang H, Mulinare J, Zhao P, Wong L Y, Gindler J, Hong S X, Correa A.
Prevention of neural-tube defects with folic acid in china. China-U. S. collaborative project for neural tube defect prevention.
N Engl J Med.
1999;
341
1485-1490
76
Hages M, Thorand B, Prinz-Langenohl R, Bung P, Pietrzik K.
Prävention von Neuralrohrdefekten (NRD) durch perikonzeptionelle Folsäuregaben. Eine Darstellung des aktuellen Forschungsstandes.
Geburtsh Frauenheilk.
1996;
56
M59-M65
77
Stengl S, Schmidt A, Salzer H.
Folsäure zum Schutz vor Neuralrohrschlussstörungen: Informationsstand von Patientinnen und Ärzten.
Geburtsh Frauenheilk.
2000;
60
26-29
78
Rosenquist T H, Schneider A M, Monaghan D T.
N-methyl-D-aspartate receptor agonist modulate homocysteine-induced developmental abnormalities.
FASEB J.
1999;
13
1523-1531
79
Greene N DE, Dunlevy L PE, Copp A J.
Homocysteine is embryotoxic but does not cause neural tube defects in mouse embryos.
Anat Embryol.
2003;
206
185-191
80
Van der Put N MJ, Steegers-Theunissen R PM, Frosst P, Trijbels F JM, Eskes T KAB, van den Heuvel L P, Mariman E CM, den Heijer M, Rozen R, Blom H J.
Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida.
Lancet.
1995;
346
1070-1071
81
Christensen B, Arbour L, Tran P, Leclerc D, Sabbaghian N, Rozen R.
Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects.
Am J Med Genet.
1999;
84
151-157
82
Shields D C, Kirke P N, Mills J L, Ramsbottom D, Molloy A M, Burke H, Weir D G, Scott J M, Whitehead A S.
The “thermolabile” variant of methylenetetrahydrofolate reductase and neural tube defects: an evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother.
Am J Hum Genet.
1999;
64
1045-1055
83
Botto L D, Yang Q.
5, 10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review.
Am J Epidemiol.
2000;
151
862-877
84
Adams Jr M J, Khoury M J, Scanlon K S, Stevenson R E, Knight G J, Haddow J E, Sylvester G C, Cheek J E, Henry J P, Stabler S P.
Elevated midtrimester serum methylmalonic acid levels as a risk factor for neural tube defects.
Teratology.
1995;
51
311-317
85
Koebnick C, Heins U A, Hoffmann I, Leitzmann C.
Die Bedeutung von Vitamin B12 in der Schwangerschaft und daraus resultierende Empfehlungen für die Schwangerschaftsvorsorge.
Geburtsh Frauenheilk.
2002;
62
227-233
86
Mills J L, Kirke P N, Molloy A M, Burke H, Conley M R, Lee Y J.
Methylenetetrahydrofolate reductase thermolabile variant and oral clefts.
Am J Med Genet.
1999;
86
71-74
87
Kapusta L, Haagmans M L, Steegers E A, Cuypers M H, Blom H J, Eskes T K.
Congenital heart defects and maternal derangement of homocysteine metabolism.
J Pediatr.
1999;
135
773-774
88
Roberts J M.
Preeclampsia: what we know and what we do not know.
Semin Perinatol.
2000;
24
24-28
89
Heyl W, Heintz B, Reister F, Faridi A, Witte K, Lemmer B, Rath W.
Zirkadiane Rhythmik des Blutdrucks und der VCAM-1-Konzentration im Serum und Urin bei hypertensiven Schwangeren.
Geburtsh Frauenheilk.
2000;
60
519-522
90
Roberts J M, Hubel C A.
Is oxidative stress the link in the two-stage model of preeclampsia?.
Lancet.
1999;
354
788-789
91
Wagner P M, Heyl W, Rath W.
Die Bedeutung von Stickstoffmonoxid in der Pathophysiologie und Therapie der Präeklampsie.
Geburtsh Frauenheilk.
2000;
60
26-29
92
Lowe D T.
Nitric oxide dysfunction in the pathophysiology of preeclampsia.
Nitric Oxide.
2000;
4
441-458
93
Ellis J, Wennerholm U B, Bengtsson A, Lilja H, Pettersson A, Sultan B, Wennergren M, Hagberg H.
Levels of dimethylarginines and cytokines in mild and severe preeclampsia.
Acta Obstet Gynecol Scand.
2001;
80
602-608
94
Pettersson A, Hedner T, Milsom I.
Increased circulating concentrations of asymmetric dimethyl arginine (ADMA), an endogenous inhibitor of nitric oxide synthesis, in preeclampsia.
Acta Obstet Gynecol Scand.
1998;
77
808-813
95
Sikkema J M, van Rijn B B, Franx A, Bruinse H W, de Roos R, Stroes E S, van Faassen E E.
Placental superoxide is increased in pre-eclampsia.
Placenta.
2001;
22
304-308
96
Hubel C A.
Oxidative stress in the pathogenesis of preeclampsia.
Proc Soc Exp Biol Med.
1999;
222
222-235
97
Mikhail M S, Anyaegbunam A, Garfinkel D, Palan P R, Basu J, Romney S L.
Preeclampsia and antioxidant nutrients: Decreased plasma levels of reduced ascorbic acid, α-tocopherol, and beta-carotene in women with preeclampsia.
Am J Obstet Gynecol.
1994;
171
150-157
98
Palan P R, Mikhail M S, Romney S L.
Placental and serum levels of carotenoids in preeclampsia.
Obstet Gynecol.
2001;
98
459-462
99
Chappell L C, Seed P T, Briley A L, Kelly F J, Lee R, Hunt B J, Parmar K, Bewley S J, Shennan A H, Steer P J, Poston L.
Effect of antioxidants on the occurrence of preeclampsia in women at increased risk: a randomised trial.
Lancet.
1999;
354
810-816
100
Hernández-Díaz S, Werler M M, Louik C, Mitchell A A.
Risk of gestational hypertension to folic acid supplementation during pregnancy.
Am J Epidemiol.
2002;
156
806-812
101
Ray J G, Mamdani M M.
Association between folic acid food fortification and hypertension or preeclampsia in pregnancy.
Arch Intern Med.
2002;
162
1776-1777
102
Wang J, Trudinger B J, Duarte N, Wilcken D E, Wang X L.
Elevated circulating homocyst(e)ine levels in placental vascular disease and associated pre-eclampsia.
Br J Obstet Gynecol.
2000;
107
935-938
103
Hogg B B, Tamura T, Johnston K E, DuBard M B, Goldenberg R L.
Second-trimester plasma homocysteine levels and pregnancy-induced hypertension, preeclampsia, and intrauterine growth restriction.
Am J Obstet Gynecol.
2000;
183
805-809
104
Mayerhofer K, Hefler L, Zeisler H, Tempfer C, Bodner K, Stöckler-Ipsiroglu S, Mühl A, Kaider A, Schatten C, Leodolter S, Husslein P, Kainz C.
Serum homocyst(e)ine levels in women with preeclampsia.
Wien Klin Wochenschr.
2000;
112
271-275
105
Guttormsen A B, Ueland P M, Svarstad E, Refsum H.
Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure.
Kidney Int.
1997;
52
495-502
106
Olteanu H, Banerjee R.
Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation.
J Biol Chem.
2001;
276
35558-35563
107
Mosharov E, Cranford M R, Banerjee R.
The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes.
Biochemistry.
2000;
39
13005-13011
108
Deplancke B, Gaskins H R.
Redox control of the transsulfuration and glutathione biosynthesis pathways.
Curr Opin Clin Nutr Metab Care.
2002;
5
85-92
109
Grandone E, Margaglione M, Colaizzo D, Cappuci G, Paladini D, Martinelli P, Montanaro S, Pavone G, Di Minno G.
Factor V Leiden, C > T MTHFR polymorphism and genetic susceptibility to preeclampsia.
Thromb Haemost.
1997;
77
1052-1054
110
Sohda S, Arinami T, Hamada H, Yamada H, Hamaguchi H, Kubo T.
Methylenetetrahydrofolate reductase polymorphism and pre-eclampsia.
J Med Genet.
1997;
34
525-526
111
Morrison E R, Miedzybrodka Z H, Campbell D M, Haites N E, Wilson B J, Watson M S, Graeves M, Vickers M A.
Prothrombotic genotypes are not associated with preeclampsia and gestational hypertension: results from a large population-based study and systematic review.
Thromb Haempst.
2002;
87
779-785
112
Raijmakers M T, Zusterzeel P L, Steegers E A, Peters W H.
Hyperhomocysteinaemia: a risk factor for preeclampsia?.
Eur J Obstet Gynecol Reprod Biol.
2001;
95
226-228
Prof. Dr. Wolfgang Herrmann
Institut für Klinische Chemie · Universitätskliniken des Saarlandes · Gebäude 40
66421 Homburg/Saar
Email: kchwher@uniklinik-saarland.de