Geburtshilfe Frauenheilkd 2003; 63(10): 990-998
DOI: 10.1055/s-2003-42733
Übersicht

Georg Thieme Verlag Stuttgart · New York

Die Bedeutung der Hyperhomocysteinämie für Embryonalentwicklung und Schwangerschaftskomplikationen

The Role of Hyperhomocysteinemia in the Development of the Embryo and the Etiology of Complications of PregnancyU. Hübner 1 , I. Koch 2 , U. Retzke 2 , W. Herrmann 1
  • 1Institut für Klinische Chemie/Zentrallabor, Universitätskliniken des Saarlandes, Homburg/Saar
  • 2Frauenklinik im Zentralklinikum Suhl, Suhl
Further Information

Publication History

Eingang Manuskript: 16. Januar 2003 Eingang revidiertes Manuskript: 6. Mai 2003

Akzeptiert: 12. Mai 2003

Publication Date:
10 October 2003 (online)

Zusammenfassung

Die Hyperhomocysteinämie resultiert aus einem gestörten Methioninmetabolismus. Leichte und mäßige Hyperhomocysteinämien sind häufig auf ein Vitamindefizit an Folsäure, Vitamin B12 und/oder B6 zurückzuführen. Die seltenen schweren Hyperhomocysteinämien beruhen auf homozygoten Enzymmutationen.

Die Hyperhomocysteinämie ist ein unabhängiger Risikofaktor für arteriosklerotische Erkrankungen. Viele neuere Studien zeigen, dass Homocystein auch mit geburtshilflichen Erkrankungen wie Präeklampsie, HELLP-Syndrom, habituellen Aborten und angeborenen kindlichen Fehlbildungen wie Neuralrohrdefekten assoziiert ist.

Beim habituellen Abort wurde die Assoziation sowohl mit der Folatdefizienz als auch mit der Hyperhomocysteinämie beschrieben. Zur Prophylaxe kindlicher Neuralrohrdefekte wird eine Supplementation mit Folsäure spätestens bei der Planung einer Schwangerschaft empfohlen. Die prophylaktische Wirksamkeit einer Folsäuresupplementierung und tierexperimentelle Untersuchungen weisen auf die Bedeutung des Homocysteins für die Pathogenese von Neuralrohrdefekten hin.

Bei der Präeklampsie wird angenommen, dass oxidativer Stress an der Pathogenese der Endotheldysfunktion beteiligt ist. Sowohl in der präeklamptischen Plazenta als auch im mütterlichen Plasma wurden erhöhte Konzentrationen stabiler Oxidationsprodukte und verminderte Antioxidanzienkonzentrationen gefunden. Homocystein kann oxidativen Stress auslösen und direkt zytotoxisch auf Endothelzellen wirken. In der normalen Schwangerschaft sinkt die Plasmahomocysteinkonzentration. Bei der Präeklampsie wurden in mehreren, jedoch nicht in allen Studien erhöhte Plasmahomocysteinkonzentrationen im Vergleich zu normalen Schwangerschaften gefunden. Der Plasmahomocysteinanstieg bei Präeklampsie ist relativ niedrig und kann auf der Nierenbeteiligung und einer Reaktion des Methioninstoffwechsels auf oxidativen Stress beruhen. Daher ist eine direkte ätiologische Bedeutung des Homocysteins für die Endotheldysfunktion bei der Präeklampsie nicht sicher.

Abstract

Hyperhomocysteinemia is a result of disturbed methionine metabolism. Mild and moderate forms are commonly caused by deficiency of folic acid and vitamins B12 and B6. Rare severe forms of hyperhomocysteinemia are due to homozygotic enzyme mutations. Hyperhomocysteinemia is an independent risk factor for the development of atherosclerotic vascular disease. Recent studies also indicate an association with preeclampsia, HELLP syndrome, recurrent early pregnancy loss, and congenital anomalies such as neural tube defects. Several studies of recurrent early pregnancy loss have documented an association with folic acid deficiency and hyperhomocysteinemia. Folic acid supplementation to prevent neural tube defects is recommended for women attempting to conceive (and during early pregnancy). The efficacy of folic acid supplementation and the results of animal studies support a role of homocysteine in the pathogenesis of neural tube defects.

The pathogenesis of endothelial dysfunction in preeclampsia involves oxidative stress. Elevated levels of stable oxidation products and decreased levels of antioxidants are found in the preeclamptic placenta and maternal plasma. Homocysteine induces oxidative stress and is toxic to endothelial cells. Plasma homocysteine levels decrease during normal pregnancy. Several studies have reported increased plasma homocysteine levels in pregnancies complicated by preeclampsia, but this has been disputed. The increase of plasma homocysteine in preeclampsia is small and may result from disturbed renal function and alterations of methionine metabolism due to oxidative stress. Thus it is not clear whether hyperhomocysteinemia is involved in the etiology of preeclampsia.

Literatur

  • 1 Welch G N, Loscalzo J. Homocystein and atherothrombosis.  New Engl J Med. 1998;  338 1042-1050
  • 2 Herrmann W. The importance of hyperhomocysteinemia as a risk factor for diseases: an overview.  Clin Chem Lab Med. 2001;  39 666-674
  • 3 Dekker G A, de Vries J IP, Doelitzsch P M, Huijgens P C, von Blomberg B ME, Jakobs C, van Geijn H P. Underlying disorders associated with severe early-onset preeclampsia.  Am J Obstet Gynecol. 1995;  173 1042-1048
  • 4 Cotter A M, Molloy A M, Scott J M, Daly S F. Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe preeclampsia.  Am J Obstet Gynecol. 2001;  185 781-785
  • 5 Nelen W LDM. Hyperhomocysteinaemia and human reproduction.  Clin Chem Lab Med. 2001;  39 758-763
  • 6 Powers R W, Evans R W, Majors A K, Ojimba J I, Ness R B, Crombleholme W R, Roberts J M. Plasma homocysteine concentration is increased in preeclampsia and is associated with evidence of endothelial activation.  Am J Obstet Gynecol. 1998;  179 1605-1611
  • 7 Meister A, Anderson M E. Glutathione.  Ann Rev Biochem. 1983;  52 711-760
  • 8 Wright C E, Tallan H H, Lin Y Y. Taurine: biological update.  Ann Rev Biochem. 1986;  55 427-453
  • 9 Finkelstein J D. Pathways and regulation of homocysteine metabolism in mammals.  Semin Thromb Hemost. 2000;  26 219-225
  • 10 Finkelstein J D. The metabolism of homocysteine: pathways and regulation.  Eur J Pediatr. 1998;  157 S40-S44
  • 11 Brattstrom L, Israelsson B, Lindgärde F, Hultberg B. Higher total plasma homocysteine in vitamin B12 deficiency than in heterozygosity for homocysteinuria due to β-synthase deficiency.  Metabolism. 1988;  37 175-178
  • 12 Kang S S, Wong P WK, Norusis M. Homocysteinemia due to folate deficiency.  Metabolism. 1987;  36 458-462
  • 13 Stabler S P, Marcell P D, Podell E R, Allen R H, Savage D G, Lindenbaum J. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry.  J Clin Invest. 1988;  81 466-474
  • 14 Herrmann W, Obeid R, Schorr H, Geisel J. Effect of MTHFR polymorphism on homocysteine concentration in dependence on folate and vitamin B-12 status.  Clin Chem Lab Med. 2002;  40 A41
  • 15 Stein J H, McBride P E. Hyperhomocysteinemia and atherosclerotic vascular disease.  Arch Intern Med. 1998;  158 1301-1306
  • 16 Boers G H, Fowler B, Smals A G, Trijbels F J, Leermakers A I, Kleijer W J, Kloppenborg P W. et al . Improved identification of heterozygotes for homocysteinuria due to cystathionine synthetase deficiency by the combination of methionine loading and enzyme determination in cultured fibroblast.  Hum Genet. 1985;  69 164-169
  • 17 Brattstrom L, Wilcken D E, Ohrvik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease, the result of a metaanalysis.  Circulation. 1998;  98 2520-2526
  • 18 Molloy A M, Daly S, Mills L, Kirke P N, Whitehead A S, Ramsbottom D, Conley M R, Weir D G, Scott J M. Thermolabile variant of 5, 10-methylenetetrahydrofolate reductase associated with low red-cell folates: Implications for folate intake recommendations.  Lancet. 1997;  349 1591-1593
  • 19 Friso S, Choi S W, Girelli D, Mason J B, Dolnikowski G G, Bagley P J, Olivieri O, Jacques P F, Rosenberg I H, Corrocher R, Selhub J. A common mutation in the 5, 10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status.  Proc Natl Acad Sci USA. 2002;  99 5606-5611
  • 20 Blount B C, Mack M M, Wehr C M, MacGregor J T, Hiatt R A, Wang G, Wickramasinghe S N, Everson R B, Ames B N. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage.  Proc Natl Acad Sci USA. 1997;  94 3290-3295
  • 21 Duthie S J, Narayanan S, Brand G M, Pirie L, Grant G. Impact of folate deficiency on DNA stability.  J Nutr. 2002;  132 2444S-2449S
  • 22 Carson N AJ, Neill D W. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland.  Arch Dis Child. 1962;  37 505-513
  • 23 Mudd S H, Levy H L, Skovby F. Disorders of transsulfuration. Scriver CR, Beaudet AL, Sly WS, Valle D The Metabolic and Molecular Bases of Inherited Disease. 7th ed. Vol. 1. New York; McGraw-Hill 1995: 1279-1327
  • 24 Rees M M, Rodgers G M. Homocysteinemia. Association of a metabolic disorder with vascular disease and thrombosis.  Thromb Res. 1993;  71 337-359
  • 25 Savage D J, Lindenbaum J, Stabler S P, Allen R H. Sensitivity of serum methylmalonic acid and total homocysteine determinants for diagnosing cobalamin and folate deficiencies.  Am J Med. 1994;  96 239-246
  • 26 McCully K S. Homocysteine and vascular disease.  Nat Med. 1996;  2 386-389
  • 27 Mayer E L, Jacobsen D W, Robinson K. Homocysteine and coronary atherosclerosis.  J Am Coll Cardiol. 1996;  27 517-527
  • 28 Herrmann W, Quast S, Ellgass A, Wolter K, Kiessig S T, Molinari E, Riegel W. An increased serum level of free apo(a) in renal patients is more striking than that of Lp(a) and is influenced by homocysteine.  Nephron. 2000;  85 41-49
  • 29 Herrmann W. Homocysteine, cystathionine, methylmalonic acid and B-vitamins in patients with renal disease.  Clin Chem Lab Med. 2001;  39 739-746
  • 30 Ueland P M, Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy.  J Lab Clin Med. 1989;  114 473-501
  • 31 Ueland P M, Refsum H, Brattstrom I. Plasma homocysteine and cardiovascular disease. Francis RB Jr Atherosclerotic Cardiovascular Disease, Hemostasis, and Endothelial Function. New York; Marcel Dekker 1992: 183-236
  • 32 Thambyrajah J, Townend J N. Homocysteine and atherothrombosis - mechanisms for injury.  Eur Heart J. 2000;  21 967-974
  • 33 Stanger O, Weger M, Renner W, Konetschny R. Vascular dysfunction in hyperhomocysteinemia. Implications for atherothrombotic disease.  Clin Chem Lab Med. 2001;  39 725-733
  • 34 Toborek M, Kopieczna-Grzebieniak E, Drozdz M, Wieczorek M. Increased lipid peroxidation as a mechanism of methionine-induced atherosclerosis in rabbits.  Atherosclerosis. 1995;  115 217-224
  • 35 Lentz S R, Sadler J E. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.  J Clin Invest. 1991;  88 1906-1914
  • 36 Rodgers G M, Kane W H. Activation of endogenous factor V by a homocysteine-induced vascular cell activator.  J Clin Invest. 1986;  77 1909-1916
  • 37 Fryer R H, Wilson B D, Gubler D B, Fitzgerald L A, Rodgers G M. Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells.  Arterioscler Thromb. 1993;  13 1327-1333
  • 38 Hajjar K A. Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor.  J Clin Invest. 1993;  91 2873-2879
  • 39 Nishinanga M, Ozawa T, Shimada K. Homocyst(e)ine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells.  J Clin Invest. 1993;  92 1381-1386
  • 40 Kirchner T, Sinzinger H. Homocysteine - relevant for atherogenesis?.  Wien Klin Wochenschr. 2000;  112 523-532
  • 41 Aubard Y, Darodes N, Cantaloube M. Hyperhomocysteinemia and pregnancy - review of our present understanding and therapeutic implications.  Eur J Obstet Gynecol Reprod Biol. 2000;  93 157-165
  • 42 Panganamala R V, Karpen C W, Merola A J. Peroxide mediated effects of homocysteine on arterial prostacyclin synthesis.  Prostaglandins Leukot Med. 1986;  22 349-356
  • 43 Cooke J P. Does ADMA cause endothelial dysfunction?.  Arterioscler Thromb Vasc Biol. 2000;  20 2032-2037
  • 44 Böger R H, Bode-Böger S M, Sydow K, Heistad D D, Lentz S R. Plasma concentrations of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocysteinemia or hypercholesterolemia.  Arterioscler Thromb Vasc Biol. 2000;  20 1557-1564
  • 45 Stühlinger M C, Tsao P S, Her J H, Kimoto M, Balint R F, Cooke J P. Homocysteine impairs the nitric oxide synthase pathway. Role of asymmetric dimethylarginine.  Circulation. 2001;  104 2569-2575
  • 46 Beckman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly.  Am J Physiol. 1996;  271 C1424-C1437
  • 47 Yamamoto M, Hara H, Adachi T. Effects of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface.  FEBS Letters. 2000;  486 159-162
  • 48 Poddar R, Sivasubramanian N, DiBello P M, Robinson K, Jacobsen D W. Homocysteine induces expression and secretion of monocyste chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells. Implications for vascular disease.  Circulation. 2001;  103 2717-2723
  • 49 Nauck M, Bisse E, Nauck M, Wieland H. Pre-analytical conditions affecting the determination of the plasma homocysteine concentration.  Clin Chem Lab Med. 2001;  39 675-680
  • 50 Clark S, Youngman L D, Sullivan J, Peto R, Collins R. Stabilization of homocysteine in unseparated blood over several days: a solution for epidemiological studies.  Clin Chem. 2003;  49 518-520
  • 51 Leino A. Fully automated measurement of total homocysteine in plasma and serum on the Abbott IMx analyzer.  Clin Chem. 1999;  45 569-571
  • 52 Walker M C, Smith G N, Perkins S L, Keely E J, Garner P R. Changes in homocysteine levels during normal pregnancy.  Am J Obstet Gynecol. 1999;  180 660-664
  • 53 Murphy M M, Scott J M, McPartlin J M, Fernandez-Ballart J D. The pregnancy-related decrease in fasting plasma homocysteine is not explained by folic acid supplementation, hemodilution or a decrease in albumin in a longitudinal study.  Am J Clin Nutr. 2002;  76 614-619
  • 54 Vollset S E, Refsum H, Irgens L M, Emblem B M, Tverdal A, Gjessing H K, Monsen A LB, Ueland P M. Plasma total homocysteine, pregnancy complications, and adverse outcomes: the Hordaland homocysteine study.  Am J Clin Nutr. 2000;  71 962-968
  • 55 Hasbargen U, Lohse P, Thaler C J. The number of dichorionic twin pregnancies is reduced by the common MTHFR 677 C → T mutation.  Hum Reprod. 2000;  15 2659-2662
  • 56 Czeizel A E, Metneki J, Dudas I. The higher rate of multiple births after periconceptional multivitamin supplementation: an analysis of causes.  Acta Genet Med Gemello (Roma). 1994;  43 175-184
  • 57 Werler M M, Cragan J D, Wasserman C R, Shaw G M, Erickson J D, Mitchell A A. Multivitamin supplementation and multiple births.  Am J Med Genet. 1997;  71 93-96
  • 58 Ericson A, Kallen B, Aberg A. Use of multivitamins and folic acid in early pregnancy and multiple births in Sweden.  Twin Res. 2001;  4 63-66
  • 59 Li Z, Gindler J, Wang H, Berry R J, Li S, Correa A, Zheng J C, Erickson J D, Wang J. Folic acid supplements during early pregnancy and likelihood of multiple births: a population-based cohort study.  Lancet. 2003;  361 380-384
  • 60 Hibbard B M. The role of folic acid in pregnancy.  J Obstet Gynecol Br Cwth. 1964;  71 529-541
  • 61 Steegers-Theunissen R PM, Boers G HJ, Blom H J, Trijbels F JM, Eskes T KAB. Hyperhomocysteinemia and recurrent spontaneous abortion or abruption placentae.  Lancet. 1992;  339 1122-1123
  • 62 Wouters M B, Boers G H, Blom H J, Trijbels F J, Thomas C M, Born G F, Steegers-Theunissen R P, Eskes T K. Hyperhomocysteinemia: a risk factor in women with unexplained recurrent early pregnancy loss.  Fertil Steril. 1993;  60 820-825
  • 63 Nelen W L, Blom H J, Steegers E A, Thomas C M, Eskes T K. Homocysteine and folate levels as risk factors for recurrent early pregnancy loss.  Obstet Gynecol. 2000;  95 519-524
  • 64 Nelen W L, Blom H J, Steegers E A, den Heiher M, Eskes T K. Hyperhomocysteinemia and recurrent pregnancy loss: a meta-analysis.  Fertil Steril. 2000;  74 1196-1199
  • 65 Quere I, Bellet H, Hoffet M, Janbon C, Mares P, Gris J C. A woman with five consecutive fetal deaths: case report and retrospective analysis of hyperhomo-cysteinemia prevalence in 100 consecutive women with recurrent miscarriages.  Fertil Steril. 1998;  69 152-154
  • 66 Coumans A BC, Huijgens P C, de Vreis J IP, van Pampus M G, Dekker G A. Haemostatic and metabolic abnormalities in women with unexplained recurrent abortion.  Hum Reprod. 1999;  14 211-214
  • 67 Blumenfeld Z, Brenner B. Thrombophilia-associated pregnancy wastage.  Fertil Steril. 1999;  72 765-774
  • 68 Brenner B, Blumenfeld Z. Thrombophilia and fetal loss.  Blood Reviews. 1997;  11 72-79
  • 69 Steegers-Theunissen R PM, Boers G HJ, Trijbels F JM. Neural tube defects and derangement of homocysteine metabolism.  N Engl J Med. 1991;  324 199-200
  • 70 Steegers-Theunissen R PM, Boers G HJ, Trijbels F JM, Finkelstein J D, Blom H J, Thomas C MG, Borm G F, Wouters M GAJ, Eskes T KAB. Maternal hyperhomocysteinemia: a risk factor for neural-tube defects?.  Metabolism. 1994;  43 1475-1480
  • 71 Mills J L, McPartlin J M, Kirke P N, Lee Y J, Conley M R, Weir D G. Homocysteine metabolism in pregnancies complicated by neural-tube defects.  Lancet. 1995;  345 149-151
  • 72 Van der Put N MJ, Thomas C M, Eskes T K, Trijbels F J, Steegers-Theunissen R P, Mariman E C. Alterated folate and vitamin B12 metabolism in families with spina bifida offspring.  Q J Med. 1997;  90 505-510
  • 73 Vitamin Study Research Group M RC. Prevention of neural tube defects: results of the medical research council vitamin study.  Lancet. 1991;  338 131-137
  • 74 Czeizel A E, Dudas I. Prevention of the first occurrence of neural tube defects by periconceptional vitamin supplementation.  N Engl J Med. 1992;  327 1832-1835
  • 75 Berry R J, Li Z, Erickson J D, Li S, Moore C A, Wang H, Mulinare J, Zhao P, Wong L Y, Gindler J, Hong S X, Correa A. Prevention of neural-tube defects with folic acid in china. China-U. S. collaborative project for neural tube defect prevention.  N Engl J Med. 1999;  341 1485-1490
  • 76 Hages M, Thorand B, Prinz-Langenohl R, Bung P, Pietrzik K. Prävention von Neuralrohrdefekten (NRD) durch perikonzeptionelle Folsäuregaben. Eine Darstellung des aktuellen Forschungsstandes.  Geburtsh Frauenheilk. 1996;  56 M59-M65
  • 77 Stengl S, Schmidt A, Salzer H. Folsäure zum Schutz vor Neuralrohrschlussstörungen: Informationsstand von Patientinnen und Ärzten.  Geburtsh Frauenheilk. 2000;  60 26-29
  • 78 Rosenquist T H, Schneider A M, Monaghan D T. N-methyl-D-aspartate receptor agonist modulate homocysteine-induced developmental abnormalities.  FASEB J. 1999;  13 1523-1531
  • 79 Greene N DE, Dunlevy L PE, Copp A J. Homocysteine is embryotoxic but does not cause neural tube defects in mouse embryos.  Anat Embryol. 2003;  206 185-191
  • 80 Van der Put N MJ, Steegers-Theunissen R PM, Frosst P, Trijbels F JM, Eskes T KAB, van den Heuvel L P, Mariman E CM, den Heijer M, Rozen R, Blom H J. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida.  Lancet. 1995;  346 1070-1071
  • 81 Christensen B, Arbour L, Tran P, Leclerc D, Sabbaghian N, Rozen R. Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects.  Am J Med Genet. 1999;  84 151-157
  • 82 Shields D C, Kirke P N, Mills J L, Ramsbottom D, Molloy A M, Burke H, Weir D G, Scott J M, Whitehead A S. The “thermolabile” variant of methylenetetrahydrofolate reductase and neural tube defects: an evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother.  Am J Hum Genet. 1999;  64 1045-1055
  • 83 Botto L D, Yang Q. 5, 10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review.  Am J Epidemiol. 2000;  151 862-877
  • 84 Adams Jr M J, Khoury M J, Scanlon K S, Stevenson R E, Knight G J, Haddow J E, Sylvester G C, Cheek J E, Henry J P, Stabler S P. Elevated midtrimester serum methylmalonic acid levels as a risk factor for neural tube defects.  Teratology. 1995;  51 311-317
  • 85 Koebnick C, Heins U A, Hoffmann I, Leitzmann C. Die Bedeutung von Vitamin B12 in der Schwangerschaft und daraus resultierende Empfehlungen für die Schwangerschaftsvorsorge.  Geburtsh Frauenheilk. 2002;  62 227-233
  • 86 Mills J L, Kirke P N, Molloy A M, Burke H, Conley M R, Lee Y J. Methylenetetrahydrofolate reductase thermolabile variant and oral clefts.  Am J Med Genet. 1999;  86 71-74
  • 87 Kapusta L, Haagmans M L, Steegers E A, Cuypers M H, Blom H J, Eskes T K. Congenital heart defects and maternal derangement of homocysteine metabolism.  J Pediatr. 1999;  135 773-774
  • 88 Roberts J M. Preeclampsia: what we know and what we do not know.  Semin Perinatol. 2000;  24 24-28
  • 89 Heyl W, Heintz B, Reister F, Faridi A, Witte K, Lemmer B, Rath W. Zirkadiane Rhythmik des Blutdrucks und der VCAM-1-Konzentration im Serum und Urin bei hypertensiven Schwangeren.  Geburtsh Frauenheilk. 2000;  60 519-522
  • 90 Roberts J M, Hubel C A. Is oxidative stress the link in the two-stage model of preeclampsia?.  Lancet. 1999;  354 788-789
  • 91 Wagner P M, Heyl W, Rath W. Die Bedeutung von Stickstoffmonoxid in der Pathophysiologie und Therapie der Präeklampsie.  Geburtsh Frauenheilk. 2000;  60 26-29
  • 92 Lowe D T. Nitric oxide dysfunction in the pathophysiology of preeclampsia.  Nitric Oxide. 2000;  4 441-458
  • 93 Ellis J, Wennerholm U B, Bengtsson A, Lilja H, Pettersson A, Sultan B, Wennergren M, Hagberg H. Levels of dimethylarginines and cytokines in mild and severe preeclampsia.  Acta Obstet Gynecol Scand. 2001;  80 602-608
  • 94 Pettersson A, Hedner T, Milsom I. Increased circulating concentrations of asymmetric dimethyl arginine (ADMA), an endogenous inhibitor of nitric oxide synthesis, in preeclampsia.  Acta Obstet Gynecol Scand. 1998;  77 808-813
  • 95 Sikkema J M, van Rijn B B, Franx A, Bruinse H W, de Roos R, Stroes E S, van Faassen E E. Placental superoxide is increased in pre-eclampsia.  Placenta. 2001;  22 304-308
  • 96 Hubel C A. Oxidative stress in the pathogenesis of preeclampsia.  Proc Soc Exp Biol Med. 1999;  222 222-235
  • 97 Mikhail M S, Anyaegbunam A, Garfinkel D, Palan P R, Basu J, Romney S L. Preeclampsia and antioxidant nutrients: Decreased plasma levels of reduced ascorbic acid, α-tocopherol, and beta-carotene in women with preeclampsia.  Am J Obstet Gynecol. 1994;  171 150-157
  • 98 Palan P R, Mikhail M S, Romney S L. Placental and serum levels of carotenoids in preeclampsia.  Obstet Gynecol. 2001;  98 459-462
  • 99 Chappell L C, Seed P T, Briley A L, Kelly F J, Lee R, Hunt B J, Parmar K, Bewley S J, Shennan A H, Steer P J, Poston L. Effect of antioxidants on the occurrence of preeclampsia in women at increased risk: a randomised trial.  Lancet. 1999;  354 810-816
  • 100 Hernández-Díaz S, Werler M M, Louik C, Mitchell A A. Risk of gestational hypertension to folic acid supplementation during pregnancy.  Am J Epidemiol. 2002;  156 806-812
  • 101 Ray J G, Mamdani M M. Association between folic acid food fortification and hypertension or preeclampsia in pregnancy.  Arch Intern Med. 2002;  162 1776-1777
  • 102 Wang J, Trudinger B J, Duarte N, Wilcken D E, Wang X L. Elevated circulating homocyst(e)ine levels in placental vascular disease and associated pre-eclampsia.  Br J Obstet Gynecol. 2000;  107 935-938
  • 103 Hogg B B, Tamura T, Johnston K E, DuBard M B, Goldenberg R L. Second-trimester plasma homocysteine levels and pregnancy-induced hypertension, preeclampsia, and intrauterine growth restriction.  Am J Obstet Gynecol. 2000;  183 805-809
  • 104 Mayerhofer K, Hefler L, Zeisler H, Tempfer C, Bodner K, Stöckler-Ipsiroglu S, Mühl A, Kaider A, Schatten C, Leodolter S, Husslein P, Kainz C. Serum homocyst(e)ine levels in women with preeclampsia.  Wien Klin Wochenschr. 2000;  112 271-275
  • 105 Guttormsen A B, Ueland P M, Svarstad E, Refsum H. Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure.  Kidney Int. 1997;  52 495-502
  • 106 Olteanu H, Banerjee R. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation.  J Biol Chem. 2001;  276 35558-35563
  • 107 Mosharov E, Cranford M R, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes.  Biochemistry. 2000;  39 13005-13011
  • 108 Deplancke B, Gaskins H R. Redox control of the transsulfuration and glutathione biosynthesis pathways.  Curr Opin Clin Nutr Metab Care. 2002;  5 85-92
  • 109 Grandone E, Margaglione M, Colaizzo D, Cappuci G, Paladini D, Martinelli P, Montanaro S, Pavone G, Di Minno G. Factor V Leiden, C > T MTHFR polymorphism and genetic susceptibility to preeclampsia.  Thromb Haemost. 1997;  77 1052-1054
  • 110 Sohda S, Arinami T, Hamada H, Yamada H, Hamaguchi H, Kubo T. Methylenetetrahydrofolate reductase polymorphism and pre-eclampsia.  J Med Genet. 1997;  34 525-526
  • 111 Morrison E R, Miedzybrodka Z H, Campbell D M, Haites N E, Wilson B J, Watson M S, Graeves M, Vickers M A. Prothrombotic genotypes are not associated with preeclampsia and gestational hypertension: results from a large population-based study and systematic review.  Thromb Haempst. 2002;  87 779-785
  • 112 Raijmakers M T, Zusterzeel P L, Steegers E A, Peters W H. Hyperhomocysteinaemia: a risk factor for preeclampsia?.  Eur J Obstet Gynecol Reprod Biol. 2001;  95 226-228

Prof. Dr. Wolfgang Herrmann

Institut für Klinische Chemie · Universitätskliniken des Saarlandes · Gebäude 40

66421 Homburg/Saar

Email: kchwher@uniklinik-saarland.de

    >