RSS-Feed abonnieren
DOI: 10.1055/s-2003-43347
Enantiospecific Synthesis of 9,10-Dihalocamphors
Publikationsverlauf
Publikationsdatum:
26. November 2003 (online)
Abstract
A new, general and straightforward method for the enantiospecific synthesis of 9,10-dihalocamphors (including mixed derivatives) is reported and exemplified for the preparation of (+)-9,10-dibromocamphor (a well-known chiral intermediate) as well as (+)-9-bromo-10-chlorocamphor and (+)-9-bromo-10-iodocamphor (novel mixed dihalides). Our approach is based on a key stereocontrolled tandem electrophilic addition - Wagner-Meerwein rearrangement of optically pure 3-endo-(halomethyl)-3-methyl-2-methylenenorbornan-1-ols, which are easily obtained from readily accessible 9-halocamphors.
Key words
halides - ketones - electrophilic additions - chirality - bicyclic compounds
-
1a
Ho T.-L. Enantioselective Synthesis: Natural Products from Chiral Terpenes John Wiley and Sons; New York: 1992. -
1b
Seyden-Penne J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis John Wiley and Sons; New York: 1995. -
1c
Koskinen A. Asymmetric Synthesis of Natural Products John Wiley and Sons; Chichester: 1998. -
1d
Oppolzer W. Tetrahedron 1987, 43: 1969 -
1e
Blaser H.-U. Chem. Rev. 1992, 92: 935 - 2 An interesting review on the preparation of camphor derivatives is:
Money T. Nat. Prod. Rep. 1985, 253 - A plethora of examples on the synthetic use of chiral agents 2 and 3 has been reported (some of them are described in ref. 1). About intermediate 1(H/CH = CH 2 ) see:
-
3a
Paquette LA.Zhao M. J. Am. Chem. Soc. 1998, 120: 5203 -
3b
Paquette LA.Wang H.-L.Su Z.Zhao M. J. Am. Chem. Soc. 1998, 120: 5213 -
3c About catalyst 4 and other related derivatives see:
García Martínez A.Teso Vilar E.García Fraile A.de la Moya Cerero S.Lora Maroto B. Tetrahedron: Asymmetry 2003, 14: 1959 ; and references therein -
4a
Stevens RV.Chang JH.Lapalme R.Schow S.Schlageter MG.Shapiro R.Weller HN. J. Am. Chem. Soc. 1983, 105: 7719 -
4b
Stevens RV.Lawrence DS. Tetrahedron 1985, 41: 93 -
4c
Stevens RV.Beaulieu N.Chang W.-H.Daniewski AR.Takeda T.Waldner A.Williard PG.Zutter U. J. Am. Chem. Soc. 1986, 108: 1039 -
5a
Richou O.Vaillancourt V.Faulkner DJ.Albizati KF. J. Am. Chem. Soc. 1989, 54: 4729 -
5b
Vaillancourt V.Albizati KF. J. Org. Chem. 1992, 57: 3627 -
5c
Agharahimi RM.LeBel NA. J. Org. Chem. 1995, 60: 1856 -
6a
Eck CR.Mills RW.Money T. J. Chem. Soc., Perkin Trans. 1 1975, 251 -
6b
Dadson WM.Lam M.Money T.Piper SE. Can. J. Chem. 1983, 61: 343 -
7a
Komarov IV.Gorichko MV.Kornilov MY. Tetrahedron: Asymmetry 1997, 8: 435 -
7b
Komarov IV.Monsees A.Kadyrov R.Fischer C.Schmidt U.Börner A. Tetrahedron: Asymmetry 2002, 13: 1615 -
7c
Komarov IV.Monsees A.Spannenberg A.Baumann W.Schmidt U.Fischer C.Börner A. Eur. J. Org. Chem. 2003, 138 - 8 For a review see:
de la Moya Cerero S.García Martínez A.Teso Vilar E.García Fraile A.Lora Maroto B. J. Org. Chem. 2003, 68: 1451
References
Treatment of commercial enantiopure 3-endo-,9-dibromocamphor with Zn-HOAc (standard conditions, see ref. [2] ) produces the selective removal of the C(3)-bromine, giving place to pure 1(Br/H) in 95% yield.
10The reaction of 1(Br/H) with Tf2O was realized under the standard conditions described by us for other related 2-norbornanones (ref. [8] ). After chromatography (silica gel and hexane), pure triflate 5(Br) was obtained as a colorless liquid in 77% yield. [α]D 20 -55.5 (c 1.96, CH2Cl2). 1H NMR and 13C NMR, IR and MS agree with the structure.
11Alcohol 6(Br) was obtained by standard treatment of 5(Br) with LAH (e.g. ref. [8] ). Purification by chromatography (silica gel and CH2Cl2/Et2O 95:5) yields pure alcohol 6(Br) as a colorless solid in 78% yield. Mp 72-74 °C. [α]D 20 -57.3 (c 0.67, CH2Cl2). 1H NMR and 13C NMR, IR and MS agree with the structure.
12A solution of 6(Br) and an excess of corresponding N-halosuccinimide (NYS) in CH2Cl2 was stirred at r.t. overnight. After standard work up and purification by chromatography (silica gel and hexane/CH2Cl2 6: 4), corresponding pure 1(Br/Y) was obtained as a colorless solid. Compound 1(Br/Br): 85% yield. Characterization data agree with the previously described in ref.
[6b]
Compound 1(Br/Cl): 83 yield. Mp 64-66 °C. [α]D
20 +88.6 (c 0.98, CH2Cl2). 1H NMR (200 MHz, CDCl3): δ = 3.86 (d, J = 12.7 Hz, 1 H), 3.71 (d, J = 10.7 Hz, 1 H), 3.66 (d, J = 12.7 Hz, 1 H), 3.56 (d, J = 10.7 Hz, 1 H), 2.59 (dd, J = 4.5 Hz, J = 4.5 Hz, 1 H), 2.48-2.25 (m, 2 H), 2.14-1.93 (m, 1 H), 1.98 (d, J = 18.5 Hz, 1 H), 1.61-1.38 (m, 2 H), 1.12 (s, 3 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 214.2, 62.7, 52.2, 42.3, 41.2, 41.1, 39.9, 25.8, 24.8, 16.9 ppm. IR (CCl4): ν = 2964, 1747, 1415, 1385 cm-1. MS: m/z (%) = 185 (3) [M+ - 79], 171 (31), 121 (24), 107 (100), 93 (31), 79 (42), 39 (50). HRMS: calcd for C10H14BrClO: 263.9916. Found: 263.9915. Compound 1(Br/I): 80% yield. Mp 120-122 °C. [α]D
20 +44.9 (c 0.72, CH2Cl2). 1H NMR (200 MHz, CDCl3): δ = 3.67 (dd, J = 10.5 Hz, J = 1.0 Hz, 1 H), 3.55 (d, J = 10.5 Hz, 1 H), 3.44 (d, J = 11.2 Hz, 1 H), 3.17 (d, J = 11.2 Hz, 1 H), 2.61 (dd, J = 4.4 Hz, J = 4.4 Hz, 1 H), 2.40 (dm, J = 18.5 Hz, 1 H), 2.23-1.91 (m, 2 H), 1.98 (d, J = 18.5 Hz, 1 H), 1.70-1.43 (m, 2 H), 1.07 (s, 3 H) ppm. 13C NMR (50 MHz, CDCl3):
δ = 214.0, 60.8, 52.4, 42.0, 41.5, 39.4, 29.5, 26.1, 16.8, 0.3 ppm. IR (CCl4): ν = 2962, 1745, 1456, 1058 cm-1. MS: m/z (%) = 231 (10) [M+·- 127], 229 (9), 189 (4), 187 (4), 149 (6), 121 (70), 107 (100), 93 (45), 79 (60), 67 (22), 41 (58). HRMS: calcd for C10H14BrIO: 355.9273. Found: 355.9269.