References
<A NAME="RD25203ST-1A">1a</A>
Bassindale MJ.
Hamley P.
Leitner A.
Harrity JPA.
Tetrahedron Lett.
1999,
40:
3247
<A NAME="RD25203ST-1B">1b</A>
Bassindale MJ.
Edwards AS.
Hamley P.
Adams H.
Harrity JPA.
Chem. Commun.
2000,
1035
<A NAME="RD25203ST-1C">1c</A>
Wybrow RAJ.
Johnson LA.
Auffray B.
Moran WJ.
Adams H.
Harrity JPA.
Tetrahedron Lett.
2002,
43:
7851
<A NAME="RD25203ST-2">2</A>
Edwards AS.
Wybrow RAJ.
Johnstone C.
Adams H.
Harrity JPA.
Chem. Commun.
2002,
1542
<A NAME="RD25203ST-3">3</A> For lead references and a recent approach to histrionicotoxin using a single
RCM reaction see:
Tanner D.
Hagberg L.
Poulsen A.
Tetrahedron
1999,
55:
1427
<A NAME="RD25203ST-4A">4a</A>
Wallace DJ.
Cowden CJ.
Kennedy DJ.
Ashwood MS.
Cottrell IF.
Dolling U.-H.
Tetrahedron Lett.
2000,
41:
2027
<A NAME="RD25203ST-4B">4b</A>
Wallace DJ.
Goodman JM.
Kennedy DJ.
Davies AJ.
Cowden CJ.
Ashwood MS.
Cottrell IF.
Dolling U.-H.
Reider PJ.
Org. Lett.
2001,
3:
671
<A NAME="RD25203ST-4C">4c</A>
Schmidt B.
Wildemann H.
J. Org. Chem.
2000,
65:
5817
<A NAME="RD25203ST-4D">4d</A>
Schmidt B.
Westhus M.
Tetrahedron
2000,
56:
2421
<A NAME="RD25203ST-4E">4e</A>
Fukuda Y.
Sasaki H.
Shindo M.
Shishido K.
Tetrahedron Lett.
2002,
43:
2047
<A NAME="RD25203ST-4F">4f</A>
Fukuda Y.
Shindo M.
Shishido K.
Org. Lett.
2003,
5:
749
<A NAME="RD25203ST-5">5</A>
Suh Y.-G.
Shin D.-Y.
Jung J.-K.
Kim S.-H.
Chem. Commun.
2002,
1064
<A NAME="RD25203ST-6">6</A> For a recent example see:
Wright DL.
Schulte JP.
Page MA.
Org. Lett.
2000,
2:
1847
For examples of catalyst dependant diastereoselectivity see:
<A NAME="RD25203ST-7A">7a</A>
Huwe CM.
Velder J.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1996,
35:
2376
<A NAME="RD25203ST-7B">7b</A>
Lautens M.
Hughes G.
Angew. Chem. Int. Ed.
1999,
38:
129
<A NAME="RD25203ST-8">8</A>
Experimental Procedure for the Synthesis of 2,2,2-Trifluoro-1-(2-pentyl-1-aza-spiro[5.5]-undeca-4,7-dien-1-yl)-ethanone
(
13): To a solution of tetraene 12 (50 mg, 0.14 mmol) in CH2Cl2 (0.5 ml) was added Ru-catalyst I (11.5 mg, 0.014 mmol). The reaction was heated at reflux for 16 h, allowed to cool
and the solvent removed in vacuo. Purification of the resulting residue by silica
gel chromatography (100:1 hexanes:EtOAc) afforded spirocycle 13 as a colourless oil (42 mg, 99%). 1H NMR (250 MHz, C6D6): δ = 0.66 (3 H, t, J = 7.0 Hz), 0.73-2.08 (15 H, m), 2.26-2.50 (1 H, m), 3.67-3.85 (1 H, br m), 4.87-4.96
(1 H, m), 5.05 (1 H, ddd, J = 10.0, 7.0, 2.5 Hz), 5.34 (1 H, dd, J = 10.5, 2.5 Hz), 5.51 (1 H, ddd, J = 10.0, 5.5, 2.5 Hz). 13C NMR (62.9 MHz, CDCl3): δ = 13.9, 19.9, 22.5, 23.3, 26.5, 27.2, 30.6, 31.6, 34.5, 52.3, 59.2, 116.5 (q,
J = 289 Hz), 118.4, 127.1, 130.1, 130.4, 155.4 (q, J = 35 Hz). FT-IR (film): 2933 (s), 2871 (m), 1694 (s), 1201 (s), 1136 (s)cm-1. HRMS: calcd for C17H25NOCF3 (MH+): 316.1888. Found: 316.1889.