Abstract
Aqueous dimethylamine is an efficient reagent for the conversion of a variety of benzal halides to their corresponding benzaldehydes. Studies indicate that aqueous dimethylamine significantly accelerates aldehyde formation from benzal halide precursors, as compared to the use of water alone. Indeed, these reactions are routinely completed in one hour or less, depending upon substrate substitution. Desired products can be isolated in pure form, and in high yield, but silica gel filtration is often necessary to remove baseline contaminants. The method represents a novel, economical approach to acquire pure, substituted benzaldehydes from commercially available, or easily prepared starting materials.
Key Words
aqueous dimethylamine - benzal halides - hydrolysis - benzaldehydes -
N,N-dimethylformamide
References
1
Salomaa P. In
The Chemistry of the Carbonyl Group
Vol. 1:
Patai S.
Wiley;
New York:
1966.
p.177-210
See, for example:
2a
Omura K.
Swern D.
Tetrahedron
1978,
34:
1651
2b
Omura K.
Sharma A.
Swern D.
J. Org. Chem.
1976,
41:
957
2c
Huang S.
Omura K.
Swern D.
J. Org. Chem.
1976,
41:
3329
2d
Marx M.
Tidwell T.
J. Org. Chem.
1984,
49:
788
2e
Epstein W.
Sweat W.
Chem. Rev.
1967,
67:
247
2f
Albright J.
Goldman L.
J. Am. Chem. Soc.
1965,
87:
4214
2g
Albright J.
Goldman L.
J. Am. Chem. Soc.
1967,
89:
2416
2h
Parikh J.
Doering W.
J. Am. Chem. Soc.
1967,
89:
5505
2i
Corey E.
Kim C.
J. Am. Chem.Soc.
1972,
94:
7586
See, for example:
3a
Blum J.
Pri-Bar I.
J. Mol. Catal.
1986,
37:
359
3b
Geng L.
Lu X.
J. Organometal. Chem.
1989,
376:
41
3c
Kim S.
Lee S.
Bull. Korean Chem. Soc.
1990,
11:
574
3d
Firouzabadi H.
Zeynizadeh B.
Bull. Chem. Soc. Jpn.
1997,
70:
155
3e
Cha J.
Kim J.
Chun J.
Kwon O.
Kwon S.
Han S.
Org. Prep. Proced. Int.
1999,
31:
204
4
Fuson R. In
The Chemistry of the Carbonyl Group
Vol. 1:
Patai S.
Wiley;
New York:
1966.
p.211-232
5
Xi F.
Kamal F.
Schenerman M.
Tetrahedron Lett.
2002,
43:
1395
6
Nace H.
Monagle J.
J. Org. Chem.
1959,
24:
1792
7
Kornblum N.
Jones W.
Anderson G.
Jones A.
J. Am. Chem. Soc.
1959,
81:
4113
8
Baik W.
Lee H.
Jang J.
Koo S.
Kim B.
J. Org. Chem.
2000,
65:
108
9
Angyal S.
Org. React.
1954,
8:
197
10
Abou-Teim O.
Jansen R.
McOmie J.
Perry D.
J. Chem. Soc., Perkin Trans. 1
1980,
1841
11
Note: These reactions were conducted at temperatures below 70 °C, which are not high enough to promote significant decomposition of DMF. Decomposition of DMF became relevant at temperatures around 140 °C.
12
Nagayama K.
Shimizu I.
Yamamoto A.
Chem. Lett.
1998,
1143
13
Laali K.
Herbert M.
Cushnyr B.
Bhatt A.
Terrano D.
J. Chem. Soc., Perkin Trans. 1
2001,
578
14
Miyabe H.
Torieda M.
Kiguchi T.
Naito T.
Synlett
1997,
580
15
Baillargeon V.
Stille J.
J. Am. Chem. Soc.
1986,
108:
452
16
Goswami S.
Mahapatra A.
Tetrahedron Lett.
1998,
39:
1981
17
Li C.
Xu Y.
Lu M.
Zhao Z.
Liu L.
Zhao Z.
Cui Y.
Zheng P.
Ji X.
Gao G.
Synlett
2002,
2041
18
Hajipour A.
Mallakpour S.
Baltork I.
Backnezhad H.
Synth. Commun.
2002,
32:
771
19
Corriu R.
Lanneau G.
Perrot M.
Tetrahedron Lett.
1987,
28:
3941
20
Russ R.
Zelinski T.
Anke T.
Tetrahedron Lett.
2002,
43:
791
21
Shawcross A.
Stanforth S.
Tetrahedron
1989,
45:
7063
22
Krohn K.
Khanbabaee K.
Rieger H.
Chem. Ber.
1990,
123:
1357
23
Centi G.
Perathoner S.
Top. Catal.
2001,
15:
145
24
Milner D.
Synth. Commun.
1992,
22:
73
25
Kienzle F.
Tetrahedron Lett.
1983,
24:
2213
26
Gupton J.
Idoux J.
Baker G.
Colon C.
Crews A.
Jurss C.
Rampi R.
J. Org. Chem.
1983,
48:
2933
27
Pfoertner K.
Bernauer K.
Kaufman F.
Lorch E.
Helv. Chim. Acta
1985,
68:
584
28
Downie I.
Earle M.
Heaney H.
Shuhaibar K.
Tetrahedron
1993,
49:
4015
29
Ganguly N.
Sukai A.
De S.
De P.
Synth. Commun.
2001,
31:
1607
30
Cecchetto A.
Minisci F.
Recupero F.
Fontana F.
Pedulli G.
Tetrahedron Lett.
2002,
43:
3605
31
Laev S.
Shteingarts V.
Tetrahedron Lett.
1995,
36:
4655