Subscribe to RSS
DOI: 10.1055/s-2003-44390
Conversion of Benzal Halides to Benzaldehydes in the Presence of Aqueous Dimethylamine
Publication History
Publication Date:
18 December 2003 (online)
Abstract
Aqueous dimethylamine is an efficient reagent for the conversion of a variety of benzal halides to their corresponding benzaldehydes. Studies indicate that aqueous dimethylamine significantly accelerates aldehyde formation from benzal halide precursors, as compared to the use of water alone. Indeed, these reactions are routinely completed in one hour or less, depending upon substrate substitution. Desired products can be isolated in pure form, and in high yield, but silica gel filtration is often necessary to remove baseline contaminants. The method represents a novel, economical approach to acquire pure, substituted benzaldehydes from commercially available, or easily prepared starting materials.
Key Words
aqueous dimethylamine - benzal halides - hydrolysis - benzaldehydes - N,N-dimethylformamide
- 1
Salomaa P. In The Chemistry of the Carbonyl Group Vol. 1:Patai S. Wiley; New York: 1966. p.177-210 - See, for example:
-
2a
Omura K.Swern D. Tetrahedron 1978, 34: 1651 -
2b
Omura K.Sharma A.Swern D. J. Org. Chem. 1976, 41: 957 -
2c
Huang S.Omura K.Swern D. J. Org. Chem. 1976, 41: 3329 -
2d
Marx M.Tidwell T. J. Org. Chem. 1984, 49: 788 -
2e
Epstein W.Sweat W. Chem. Rev. 1967, 67: 247 -
2f
Albright J.Goldman L. J. Am. Chem. Soc. 1965, 87: 4214 -
2g
Albright J.Goldman L. J. Am. Chem. Soc. 1967, 89: 2416 -
2h
Parikh J.Doering W. J. Am. Chem. Soc. 1967, 89: 5505 -
2i
Corey E.Kim C. J. Am. Chem.Soc. 1972, 94: 7586 - See, for example:
-
3a
Blum J.Pri-Bar I. J. Mol. Catal. 1986, 37: 359 -
3b
Geng L.Lu X. J. Organometal. Chem. 1989, 376: 41 -
3c
Kim S.Lee S. Bull. Korean Chem. Soc. 1990, 11: 574 -
3d
Firouzabadi H.Zeynizadeh B. Bull. Chem. Soc. Jpn. 1997, 70: 155 -
3e
Cha J.Kim J.Chun J.Kwon O.Kwon S.Han S. Org. Prep. Proced. Int. 1999, 31: 204 - 4
Fuson R. In The Chemistry of the Carbonyl Group Vol. 1:Patai S. Wiley; New York: 1966. p.211-232 - 5
Xi F.Kamal F.Schenerman M. Tetrahedron Lett. 2002, 43: 1395 - 6
Nace H.Monagle J. J. Org. Chem. 1959, 24: 1792 - 7
Kornblum N.Jones W.Anderson G.Jones A. J. Am. Chem. Soc. 1959, 81: 4113 - 8
Baik W.Lee H.Jang J.Koo S.Kim B. J. Org. Chem. 2000, 65: 108 - 9
Angyal S. Org. React. 1954, 8: 197 - 10
Abou-Teim O.Jansen R.McOmie J.Perry D. J. Chem. Soc., Perkin Trans. 1 1980, 1841 - 12
Nagayama K.Shimizu I.Yamamoto A. Chem. Lett. 1998, 1143 - 13
Laali K.Herbert M.Cushnyr B.Bhatt A.Terrano D. J. Chem. Soc., Perkin Trans. 1 2001, 578 - 14
Miyabe H.Torieda M.Kiguchi T.Naito T. Synlett 1997, 580 - 15
Baillargeon V.Stille J. J. Am. Chem. Soc. 1986, 108: 452 - 16
Goswami S.Mahapatra A. Tetrahedron Lett. 1998, 39: 1981 - 17
Li C.Xu Y.Lu M.Zhao Z.Liu L.Zhao Z.Cui Y.Zheng P.Ji X.Gao G. Synlett 2002, 2041 - 18
Hajipour A.Mallakpour S.Baltork I.Backnezhad H. Synth. Commun. 2002, 32: 771 - 19
Corriu R.Lanneau G.Perrot M. Tetrahedron Lett. 1987, 28: 3941 - 20
Russ R.Zelinski T.Anke T. Tetrahedron Lett. 2002, 43: 791 - 21
Shawcross A.Stanforth S. Tetrahedron 1989, 45: 7063 - 22
Krohn K.Khanbabaee K.Rieger H. Chem. Ber. 1990, 123: 1357 - 23
Centi G.Perathoner S. Top. Catal. 2001, 15: 145 - 24
Milner D. Synth. Commun. 1992, 22: 73 - 25
Kienzle F. Tetrahedron Lett. 1983, 24: 2213 - 26
Gupton J.Idoux J.Baker G.Colon C.Crews A.Jurss C.Rampi R. J. Org. Chem. 1983, 48: 2933 - 27
Pfoertner K.Bernauer K.Kaufman F.Lorch E. Helv. Chim. Acta 1985, 68: 584 - 28
Downie I.Earle M.Heaney H.Shuhaibar K. Tetrahedron 1993, 49: 4015 - 29
Ganguly N.Sukai A.De S.De P. Synth. Commun. 2001, 31: 1607 - 30
Cecchetto A.Minisci F.Recupero F.Fontana F.Pedulli G. Tetrahedron Lett. 2002, 43: 3605 - 31
Laev S.Shteingarts V. Tetrahedron Lett. 1995, 36: 4655
References
Note: These reactions were conducted at temperatures below 70 °C, which are not high enough to promote significant decomposition of DMF. Decomposition of DMF became relevant at temperatures around 140 °C.