Semin Thromb Hemost 2003; 29(5): 489-498
DOI: 10.1055/s-2003-44557
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Tumor Microenvironment and Hemorheological Abnormalities

Gianfranco Baronzio1 , Isabel Freitas2 , Hau C. Kwaan3
  • 1Physician, Family Medicine Area, ASl 1 Legnano, Milano, Italy
  • 2Professor of Cell Biology, Department of Animal Biology and CNR Institute of Molecular Genetics, University of Pavia, Pavia, Italy
  • 3Professor, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
Further Information

Publication History

Publication Date:
21 November 2003 (online)

ABSTRACT

This article reviews the various mechanisms in a malignant tumor that lead to hypoxia, production of tumor interstitial fluid, and rheological changes in its microenvironment. In addition, the associated procoagulant effects are described. The latter phenomenon is the result of complex and dynamic interplay among tumor cells, endothelial cells, circulating blood cells, and angiogenic, clotting, and hemorheological factors. The implications of these abnormalities on therapeutic approach are discussed.

REFERENCES

  • 1 Guppy M. The hypoxic core: a possible answer to the cancer paradox.  Biochem Biophys Res Commun . 2002;  299 676-680
  • 2 Freitas I, Baronzio G F. Tumor hypoxia, reoxygenation and oxygenation strategies: possible role in photodynamic therapy.  J Photochem Photobiol B . 1991;  11 3-30
  • 3 Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply and metabolic microenvironment of human tumors, a review.  Cancer Res . 1989;  49 6449-6465
  • 4 Risau W. Mechanisms of angiogenesis.  Nature . 1997;  386 671-674
  • 5 Denko N C, Giaccia A J. Tumor hypoxia, the physiological link between Trousseau's syndrome (carcinoma-induced coagulopathy) and metastasis.  Cancer Res . 2001;  61 795-798
  • 6 Hlatky L, Hahnfeldt P, Tsionou C. et al . Vascular endothelial growth factor: environmental controls and effects in angiogenesis.  Br J Cancer . 1996 (suppl XII);  s151-s156
  • 7 Grunstein J, Roberts W G, Mathieu-Costello O. et al . Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function.  Cancer Res . 1999;  59 1592-1598
  • 8 Shweiki D, Itin A, Soffer D. et al . Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.  Nature . 1992;  59 843-845
  • 9 Pepper M S. Lymphangiogenesis and tumor metastasis: myth or reality?.  Clin Cancer Res . 2001;  7 462-468
  • 10 Nagy J A, Vasile E, Feng D. et al . Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis.  J Exp Med . 2002;  196 1497-1506
  • 11 Shurin M R, Lu L, Kalinsky P. et al . TH1/TH2 in cancer, transplantation and pregnancy.  Semin Immunopathol . 1999;  21 339-359
  • 12 Vaupel P. Tumor blood flow. In: Molls M, Vaupel P, eds. Blood Perfusion and Microenvironment of Human Tumors Berlin: Springer-Verlag; 2000: 41-46
  • 13 Vaupel P. The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia.  Klin Pädiatr . 1997;  209 243-249
  • 14 Griffiths J R, McIntyre D J, Howe F A, Stubbs M. Why are cancers acidic? A carrier mediated diffusion model for H+ transport in the interstitial fluid. In: Goodie JA, Chadwick DJ, eds. The Tumor Microenvironment: Causes and Consequences of Hypoxia and Acidity. Novartis Foundation Symposium 2001. New York: John Wiley; 2001: 46-67
  • 15 Asby B S, Cantab M B. pH studies in human malignant tumors.  Lancet . 1996;  2 312-315
  • 16 Neufeld G, Kessler O, Vadasz Z, Gluzman-Poltora K Z. The contribution of proangiogenic factors to the progression of malignant disease.  Surg Oncol Clin N Am . 2001;  10 339-356
  • 17 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med . 1971;  285 1182l-1186
  • 18 Zhong H, De Marzo M A, Laughner E. et al . Overexpression of hypoxia-inducible factor 1α in common human cancer and their metastases.  Cancer Res . 1999;  59 5830-5835
  • 19 Minet E, Mottet D, Roland I. et al . Hypoxia-induced activation of HIF-1: role of HIF-1 alpha-Hsp 90 interaction.  FEBS Lett . 1999;  460 251-256
  • 20 Shweiki D, Itin A, Soffer D. et al . Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.  Nature . 1992;  359 843-845
  • 21 Semenza G L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology.  Trends Mol Med . 2001;  7 345-350
  • 22 Dachs G U, Tozer G M. Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation.  Eur J Cancer . 2000;  36 1649-1660
  • 23 Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications.  Semin Oncol . 2002;  29 (suppl 16) 10-14
  • 24 Dvorak H F, Nagy J A, Feng D, Brown L F, Dvorak A M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis.  Curr Top Microbiol Immunol . 1999;  237 97-132
  • 25 Konerding M A, Malkusch W, Klaptor B. et al . Evidence for characteristic vascular patterns in solid tumors: quantitative studies using corrosion casts.  Br J Cancer . 1999;  80 724-732
  • 26 Konerding M A, Steiberg F, van Ackern C. et al . Vascular patterns of tumors: Scanning and transmission electron microscopic studies on human xenografts.  Strahlenther Onkol . 1992;  168 444-452
  • 27 Gullino P M. The internal milieu of tumors.  Prog Exp Tumor Res . 1966;  8 1-25
  • 28 Gullino P M. Extracellular compartments of solid tumors. In: Beckert FB, ed. Cancer, a Comprehensive Treatise Vol. 3, Biology of Tumors: Cellular Biology and Growth. New York: Plenum 1975: 327-354
  • 29 Dvorak H F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy.  J Clin Oncol . 2002;  20 4368-4380
  • 30 Feng D, Nagy J A, Pyne K. et al . Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators.  Microcirculation . 1999;  6 23-44
  • 31 Nagy J A, Brown L F, Senger D R. et al . Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition.  Biochim Biophys Acta . 1989;  948 305-326
  • 32 Freitas I, Baronzio G F, Bono B. et al . Tumor interstitial fluid: misconsidered component of the internal milieu of a solid tumor.  Anticancer Res . 1997;  17 165-172
  • 33 Jain R K. Determinants of tumor blood flow: A review.  Cancer Res . 1988;  48 2641-2658
  • 34 Baronzio G F, Galante F, Gramaglia A. et al . Tumor microcirculation and its significance in therapy: possible role of omega-3 fatty acids as rheological modifiers.  Med Hypotheses . 1998;  50 175-182
  • 35 Tamsmaa J T, Keizer H J, Meinders A E. Pathogenesis of malignant ascites: Starlings law of capillary hemodynamics revisited.  Ann Oncol . 2001;  12 1353-1357
  • 36 Renkin E. Some consequences of capillary permeability to macromolecules: Starling's hypothesis reconsidered.  Am J Physiol . 1986;  250 H706-H710
  • 37 Bates D O, Hillman N J, Williams B. et al . Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure.  Cancer Res . 1989;  49 3506-3512
  • 38 Sevick E M, Jain R. Viscous resistance to blood flow in solid tumors: effect of hematocrit and intratumor viscosity.  Cancer Res . 1989;  49 3513-3519
  • 39 Freitas I, Baronzio G F, Bertone V. et al . Stroma formation in Ehrlich carcinoma. I. Oedema phase. A mitosis burst as an index of physiological reoxygenation?.  Anticancer Res . 1991;  11 569-578
  • 40 Freitas I, Bono B, Bertone V. et al . Characterization of the metabolism of perinecrotic cells in solid tumors by enzyme histochemistry.  Anticancer Res . 1996;  16 1491-1502
  • 41 Cicala C, Cirino G. Linkage between inflammation and coagulation: an update on the molecular basis of the crosstalk.  Life Sci . 1998;  62 1817-1824
  • 42 Sylven B, Bois I. Protein content and enzymatic assays of interstitial fluid from some normal tissues and transplanted mouse tumors.  Cancer Res . 1960;  20 831-834
  • 43 Vaupel P, Hockel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance.  Int J Oncol . 2000;  17 869-879
  • 44 Boucher Y, Kirkwood J M, Opacic D, Desantis M, Jain R K. Interstitial hypertension in superficial metastatic melanomas in humans.  Cancer Res . 1991;  51 6691-6694
  • 45 Boucher Y, Jain R K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse.  Cancer Res . 1992;  52 5110-5114
  • 46 Jain R K. Vascular and interstitial barriers to delivery of therapeutic agents in tumors.  Cancer Metastasis Rev . 1990;  9 253-266
  • 47 Jain R K. Therapeutic implications of tumor physiology.  Curr Opin Oncol . 1991;  3 1105-1108
  • 48 Stoher E A, Boucher Y, Stangasinger M, Jain R. Oncotic pressure in solid tumors is elevated.  Cancer Res . 2000;  60 4251-4255
  • 49 Wiig H, Aukland K, Tenstad O. Isolation of interstitial fluid from rat mammary tumors by a centrifugation method.  Am J Physiol Heart Circ Physiol . 2003;  284 H416-H424
  • 50 Baronzio G, Freitas I, Griffini P. et al . Omega-3 fatty acids can improve radioresponse modifying tumor interstitial pressure, blood rheology and membrane peroxidability.  Anticancer Res . 1994;  14 1145-1154
  • 51 Stoltz J F, Singh M, Riha P. Microrheological parameters. In: Stoltz JF, Singh M, Riha P, eds. Hemorheology in Practice Amsterdam: IOS Press 1999: 27-53
  • 52 Yan S-F, Mackman N, Kisiel W. et al . Hypoxia/hypoemia-induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis.  Artherioscler Thromb Vasc Biol . 1999;  1 2029-2035
  • 53 Browder T, Folkman J, Pirie-Sheperd S. The hemostatic system as regulator of angiogenesis.  J Biochem . 2000;  275 1521-1524
  • 54 Fernandez P M, Rickles F. Tissue factor and angiogenesis in cancer.  Curr Opin Hematol . 2002;  9 401-406
  • 55 Ruf W, Mueller B. Tissue factor in cancer angiogenesis and metastasis.  Curr Opin Hematol . 1996;  3 379-384
  • 56 Verheul H M, Hoekman K, Lupu F, van der Valk P, Brotterman H J. Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas.  Clin Cancer Res . 2000;  6 166-170
  • 57 Verheul H M, Jorna A S, Hoekman K. et al . Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets.  Blood . 2000;  96 4216-4221
  • 58 Sahni A, Francis C W. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation.  Blood . 2000;  96 3772-3778
  • 59 Lee T-H, Avraham H, Lee S H. et al . Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells.  J Biol Chem . 2002;  277 10445-10451
  • 60 Kadambi A, Moutacarreira C, Cook Y. et al . Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A.  Cancer Res . 2001;  61 2404-2408
  • 61 Heil M, Clauss M, Suzuki K. et al . Vascular endothelial growth factor-VEGF stimulates monocytes migration through endothelial monolayers via increased integrin expression.  Eur J Cell Biol . 2000;  79 850-857
  • 62 Griffioen A W, Tromp S C, Hillen H FP. Angiogenesis modulates the tumor immune response.  Int J Exp Pathol . 1998;  79 363-368
  • 63 Koehne P, Strauss W, Schindler S E. et al . Lack of hypoxic stimulation of VEGF secretion from neutrophils and platelets.  Am J Physiol Heart Circ Physiol . 2000;  279 H817-824
  • 64 Michiels C, Arnould T, Remacle J. Endothelial cell response to hypoxia: initiation of a cascade of cellular interactions.  Biochim Biophys Acta . 2000;  1497 1-10
  • 65 Salven P, Orfana A, Joensuu H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor.  Clin Cancer Res . 1999;  5 487-491
  • 66 Tietjen G W, Chien S, Scholz P. et al . Changes in blood viscosity and plasma proteins in carcinoma.  J Surg Oncol . 1977;  9 53-59
  • 67 von Tempelhoff F G, Heilman L, Hommel G. et al . Hyperviscosity syndrome in patients with ovarian carcinoma.  Cancer . 1998;  82 1104-1111
  • 68 Kwaan H, Gordon L. Thrombotic microangiopathy in the cancer patient.  Acta Haematol . 2001;  106 52-56
  • 69 Takakura N, Watanabe T, Suenobu S. et al . A role for hematopoietic stem cells in promoting angiogenesis.  Cell . 2000;  102 199-209
  • 70 Lyden D, Hattori K, Dias S. et al . Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth.  Nature Med . 2001;  7 1194-1201
  • 71 Cines D B, Pollack E S, Buck C A. et al . Endothelial cells in physiology and in pathophysiology of vascular disorders.  Blood . 1998;  91 3527-3561
  • 72 Santos M T, Valles J, Aznar J. Cell-cell interaction in thrombosis: modulation of platelet function and possibilities of pharmacological control with aspirin.  Turk J Haematol . 2002;  19 103-111
  • 73 Karmali R A. Eicosanoids in neoplasia.  Prev Med . 1987;  16 493-502
  • 74 Bockman R S. Prostaglandins in cancer: a review.  Cancer Invest . 1983;  1 485-493
  • 75 Ten V S, Pinsky D. Endothelial response to hypoxia: physiological adaptation and pathologic dysfunction.  Curr Opin Crit Care . 2002;  8 242-250
  • 76 Gorski D H, Beckett M A, Jaskowiak N T. et al . Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation.  Cancer Res . 1999;  59 3374-3378
  • 77 Geng L, Donnelly E, McMahon G. et al . Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy.  Cancer Res . 2001;  61 2413-2418
  • 78 Pietras K, Ostman A, Sjoquist M. et al . Inhibition of platelet-derived growth factor reduces interstitial hypertension and increases transcapillary transport in tumors.  Cancer Res . 2001;  61 2929-2934
  • 79 Teicher B A, Holden S A, Ara G. et al . Influence of antiangiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy.  Int J Cancer . 1995;  61 732-737
  • 80 Roca C, Primo L. Hyperthermia and angiogenesis: results and perspectives. In: Barongio GF, ed. Hyperthermia in Cancer Treatment: Locoregional Radiofrequency Hyperthermia, Interstitial and Perfusional Hyperthermia Georgetown, TX: Landes Bioscience Publisher; 2004; (in press)
  • 81 Schmitt O, Schubert C, Feyerabend T. et al . Preferential topography of proteins regulating vascularization and apoptosis in a MX1 xenotrasplant after treatment with hypoxia, hyperthermia, isofosfamide, and irradiation.  Am J Clin Oncol . 2002;  25 325-336