RSS-Feed abonnieren
DOI: 10.1055/s-2003-44988
Sc(OTf)3 as Efficient Catalyst for Aryl C-Glycoside Synthesis
Publikationsverlauf
Publikationsdatum:
08. Dezember 2003 (online)
Abstracts
Sc(OTf)3 was found to be an efficient catalyst for the C-glycosylation of phenols. Reactions of various functionalized phenols and glycosyl acetates, including an azido-bearing one, are achieved by using a catalytic amount of Sc(OTf)3 (10 mol% for neutral sugars or 50 mol% for an azido sugar) under mild conditions.
Key words
aryl C-glycosides - O→C-glycoside rearrangement - scandium triflate - catalysis - ravidomycin
-
1a
Hacksell U.Daves GD. Prog. Med. Chem. 1985, 22: 1 -
1b
Suzuki K.Matsumoto T. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products Vol. 2:Lukacs G. Springer; Berlin: 1993. p.353 -
1c
Levy DE.Tang C. The Chemistry of C-Glycosides Pergamon; Oxford: 1995. -
1d
Postema MHD. C-Glycoside Synthesis CRC; Florida: 1995. -
2a
Matsumoto T.Katsuki M.Suzuki K. Tetrahedron Lett. 1988, 29: 6935 -
2b
Kometani T.Kondo H.Fujimori Y. Synthesis 1988, 1005 -
3a Natural product syntheses by applying the O→C-glycoside rearrangement, see: Vineomycinone B2 methyl ester:
Matsumoto T.Katsuki M.Jona H.Suzuki K. J. Am. Chem. Soc. 1991, 113: 6892 -
3b Gilvocarcin M, V:
Matsumoto T.Hosoya T.Suzuki K. J. Am. Chem. Soc. 1992, 114: 3568 -
3c See also:
Hosoya T.Takashiro E.Matsumoto T.Suzuki K. J. Am. Chem. Soc. 1994, 116: 1004 -
3d C104:
Matsumoto T.Sohma T.Yamaguchi H.Kurata S.Suzuki K. Synlett 1995, 263 -
3e See also:
Matsumoto T.Sohma T.Yamaguchi H.Kurata S.Suzuki K. Tetrahedron 1995, 51: 7347 -
3f Galtamycinone:
Matsumoto T.Yamaguchi H.Suzuki K. Synlett 1996, 433 -
3g See also:
Matsumoto T.Yamaguchi H.Suzuki K. Tetrahedron 1997, 53: 16533 -
3h Ravidomycin:
Futagami S.Ohashi Y.Imura K.Hosoya T.Ohmori K.Matsumoto T.Suzuki K. Tetrahedron Lett. 2000, 41: 1063 -
3i Aquayamycin:
Matsumoto T.Yamaguchi H.Tanabe M.Kuriyama Y.Yasui Y.Suzuki K. Tetrahedron Lett. 2000, 41: 8393 - For the use of BF3·OEt2 in O→C-glycoside rearrangement, see ref. 2a,b. See also:
-
4a
Brimble MA.Davey RM.McLeod MD.Murphy M. Aust. J. Chem. 2003, 56: 787 -
4b
Kumazawa T.Onda K.Okuyama H.Matsuba S.Sato S.Onodera J. Carbohydr. Res. 2002, 337: 1007 -
4c See also:
Andrews FL.Larsen DS.Larsen L. Aust. J. Chem. 2000, 53: 15 -
4d For the use of SnCl4, see:
Matsumoto T.Hosoya T.Suzuki K. Tetrahedron Lett. 1990, 31: 4629 -
4e For the use of TMSOTf, see:
Mahling J.-A.Schmidt RR. Synthesis 1993, 325 -
4f
Toshima K.Matsuo G.Ishizuka T.Ushiki Y.Nakata M.Matsumura S. J. Org. Chem. 1998, 63: 2307 - For the combination of Cp2MCl2-AgX (M = Zr, Hf), see:
-
5a
Matsumoto T.Maeta H.Suzuki K.Tsuchihashi G. Tetrahedron Lett. 1988, 29: 3567 -
5b
Suzuki K. Pure Appl. Chem. 1994, 66: 2175 -
6a
Matsumoto T.Katsuki M.Jona H.Suzuki K. Tetrahedron Lett. 1989, 30: 6185 -
6b
Hosoya T.Ohashi Y.Matsumoto T.Suzuki K. Tetrahedron Lett. 1996, 37: 663 -
7a
Findlay JA.Liu J.-S.Radics L.Rakhit S. Can. J. Chem. 1981, 59: 3018 -
7b
Findlay JA.Liu J.-S.Radics L. Can. J. Chem. 1983, 61: 323 -
7c
Sehgal SN.Czerkawski H.Kudelski A.Pandev K.Saucier R.Vezina C. J. Antibiot. 1983, 36: 355 -
7d
Narita T.Matsumoto M.Mogi K.Kukita K.Kawahara R.Nakashima T. J. Antibiot. 1989, 42: 347 -
8a For reviews on Sc(OTf)3 in organic synthesis:
Kobayashi S. Eur. J. Org. Chem. 1999, 15 -
8b
Kobayashi S. In Lewis Acids in Organic Synthesis Vol. 2:Yamamoto H. Wiley-VCH; Weinheim: 2000. p.883 -
8c
Kobayashi S.Hachiya I.Araki M.Ishitani H. Tetrahedron Lett. 1993, 34: 3755 - For the use of Sc(OTf)3 in O-glycosidation, see:
-
9a
Hashizume N.Kobayashi S. Carbohydr. Lett. 1996, 2: 157 -
9b
Fukase K.Kinoshita I.Kanoh T.Nakai Y.Hasuoka A.Kusumoto S. Tetrahedron 1996, 52: 3897 -
9c
Yamanoi T.Yamazaki I. Tetrahedron Lett. 2001, 42: 4009 - 12
Hamura T.Hosoya T.Yamaguchi H.Kuriyama Y.Tanabe M.Miyamoto M.Yasui Y.Matsumoto T.Suzuki K. Helv. Chim. Acta 2002, 85: 3589
References
This work was presented at the 83rd Annual Meeting of the Chemical Society of Japan, March 2003, Tokyo, Abstract 2D-1-38.
11The α-isomer was used for this study. Synthesis of 2 will be reported elsewhere.
13Selected data of 1H NMR, 13C NMR, NOE and HMBC are shown below (Figure [2] ).
14Experimantal procedure as follows: To a stirred mixture of Sc(OTf)3 (210 mg, 0.427 mmol; Aldrich, 99.995%), phenol 3 (417 mg, 1.28 mmol), powdered Drierite® (2.6 g) in 1,2-dichloroethane (15 mL), was added acetate 2 (361 mg, 0.878 mmol) in 1,2-dichloroethane (8 mL) at -30 °C. After the temperature was gradually raised to 12 °C during 0.5 h, the mixture was poured into sat. aq NaHCO3 solution. After filtration through a Celite pad, the products were extracted with EtOAc (3×), and the combined organic extracts were washed with brine, and dried over Na2SO4. Removal of the solvents in vacuo and purification by silica-gel column chromatography (hexane/EtOAc = 5:1) afforded C-glycoside β-4 as white powder (462 mg, 78%).
15Typical experimental procedure for the aryl C-glycosylation of neutral sugars is described for the reaction of phenol 3 and glycosyl acetate 5a: To a stirred mixture of Sc(OTf)3 (6.7 mg, 14 µmol), phenol 3 (87.7 mg, 0.269 mmol), powdered Drierite® (403 mg) in 1,2-dichloroethane (1.5 mL), was added acetate 5a (49.8 mg, 0.134 mmol) in 1,2-dichloroethane (1.0 mL) at -30 °C. After the temperature was gradually raised to -10 °C during 1.0 h, the reaction was quenched with sat. aq NaHCO3 solution. After filtration through a Celite pad, the products were extracted with EtOAc (3×), and the combined organic extracts were washed with brine, and dried over Na2SO4. Removal of the solvents in vacuo and purification on silica-gel preparative TLC (hexane/acetone = 2:1) afforded C-glycoside 6a as white powder (75.9 mg, 89%).