Aktuelle Neurologie 2003; 30(10): 505-511
DOI: 10.1055/s-2003-45016
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Dynamische Reorganisation und Rückbildung von Hemiparesen

Prospektive Untersuchungen mit funktioneller BildgebungDynamic Reorganisation and Recovery from HemiparesisResults from Longitudinal Functional Imaging StudiesG.  Nelles1 , H.  C.  Diener1
  • 1Klinik und Poliklinik für Neurologie, Universitätsklinikum Essen
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
01. Dezember 2003 (online)

Zusammenfassung

Der Schlaganfall ist die häufigste Ursache für eine Behinderung im Erwachsenenalter. Der mit Abstand größte Teil dieser Behinderungen geht auf bleibende Armparesen zurück. Die Plastizität des Gehirns ermöglicht häufig in den Wochen und Monaten nach einem Schlaganfall eine teilweise, seltener auch vollständige Rückbildung der motorischen Ausfälle. Einige kürzlich erschienene Arbeiten haben erstmals longitudinale PET- und fMRT-Untersuchungen angewendet, um die Zusammenhänge zwischen neuronaler Plastizität und Rückbildung von Hemiparesen genauer zu untersuchen. In diesen Studien wurden neue Ergebnisse zur dynamischen Reorganisation im motorischen System berichtet, die für das Verständnis der Regenerationsvorgänge im Gehirn wichtig sind. Durch den Einsatz dieser prospektiven Studien mit funktioneller Bildgebung konnten erstmals auch rehabilitative und pharmakologische Therapieeffekte bildgebend dargestellt werden.

Abstract

Stroke is the leading cause of chronic disability in adults. In most stroke victims, this disability is related to hemiparesis. Cerebral plasticity has been proposed to explain recovery after resolution of edema and reperfusion of viable tissue. Recently, several longitudinal neurofunctional imaging studies in stroke patients have investigated how plasticity relates to recovery of motor function. These studies reported new findings on the dynamic reorganization of the motor system that are important for the understanding of stroke recovery. Longitudinal functional studies with PET and fMRI also provide an opportunity to image effects of rehabilitation and pharmacological treatments on plasticity.

Literatur

  • 1 Nakayama H, Jorgensen H S, Raaschou H O, Olsen T S. Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study.  Arch Phys Med Rehabil. 1994;  75 852-857
  • 2 Lashley K S. Factors limitung recovery after central nervous system lesions.  Journal of Nervous and Mental Disease. 1938;  88 733-755
  • 3 Leyton A SF, Sherrington C S. Observations of the excitable cortex of the chimpanzee, orang-utan, and gorilla.  Quart J Exp Physiol. 1917;  11 135-222
  • 4 Merzenich M M, Nelson R J, Stryker M P. et al . Somatosensory cortical map changes following digit amputation in adult monkeys.  J Comp Neurol. 1984;  224 591-605
  • 5 Nudo R J, Friel K M. Cortical plasticity after stroke: implications for rehabilitation.  Revue Neurologique. 1999;  155 713-717
  • 6 Elbert T, Pantev C, Wienbruch C. et al . Increased cortical representation of the fingers of the left hand in string players.  Science. 1995;  270 305-307
  • 7 Chollet F, DiPiero V, Wise R J. et al . The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography.  Ann Neurol. 1991;  29 63-71
  • 8 Weiller C, Chollet F, Friston K J. et al . Functional reorganization of the brain in recovery from striatocapsular infarction in man.  Ann Neurol. 1992;  31 463-472
  • 9 Weiller C, Ramsay S C, Wise R J. et al . Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction.  Ann Neurol. 1993;  33 181-189
  • 10 Cramer S C, Nelles G, Benson R R. et al . A functional MRI study of subjects recovered from hemiparetic stroke.  Stroke. 1997;  28 2518-2527
  • 11 Dettmers C, Stephan K M, Lemon R N, Frackowiak R S. Reorganization of the executive motor system after stroke.  Cerebrovasc Dis. 1997;  7 187-200
  • 12 Cao Y, D'Olhaberriague L, Vikingstad E M. et al . Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis.  Stroke. 1998;  29 112-122
  • 13 Seitz R J, Hoflich P, Binkofski F. et al . Role of the premotor cortex in recovery from middle cerebral artery infarction.  Arch Neurol. 1998;  55 1081-1088
  • 14 Pineiro R, Pendlebury S, Johansen-Berg H, Matthews P M. Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization?.  Stroke. 2001;  32 1134-1139
  • 15 Nelles G, Spiekermann G, Jueptner M. et al . Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study.  Stroke. 1999;  30 1510-1516
  • 16 Nelles G, Spiekermann G, Jueptner M. et al . Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study.  Ann Neurol. 1999;  46 901-909
  • 17 Nelles G, Jentzen W, Jueptner M. et al . Arm training induced brain plasticity in stroke studied with serial Positron Emission Tomography.  Neuroimage. 2001;  13 1146-1154
  • 18 Calautti C, Leroy F, Guincestre J Y, Baron J C. Dynamics of motor network overactivation after striatocapsular stroke: A longitudinal PET study using a fixed-performance paradigm.  Stroke. 2001;  32 2534-2542
  • 19 Marshall R S, Perera G M, Lazar R M. et al . Evolution of cortical activation during recovery from corticospinal tract infarction.  Stroke. 2000;  31 656-661
  • 20 Carey J R, Kimberley T J, Lewis S M. et al . Analysis of fMRI and finger tracking training in subjects with chronic stroke.  Brain. 2002;  125 773-788
  • 21 Feydy A, Carlier R, Roby-Brami A. et al . Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation.  Stroke. 2002;  33 1610-1617
  • 22 Johansen-Berg H, Dawes H, Guy C. et al . Correlation between motor improvements and altered fMRI activity after rehabilitative therapy.  Brain. 2002;  115 2731-2742
  • 23 Pariente J, Loubinoux I, Carel C. et al . Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.  Ann Neurol. 2001;  50 718-729
  • 24 Small S L, Hlustik P, Noll D C. et al . Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke.  Brain. 2002;  125 1544-1557
  • 25 Turton A, Wroe S, Trepte N. et al . Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke.  Electroencephalogr Clin Neurophysiol. 1996;  101 316-328
  • 26 Heald A, Bates D, Cartlidge N E. et al . Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months.  Brain. 1993;  116 1371-1385
  • 27 Catano A, Houa M, Caroyer J M. et al . Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis.  Electroencephalogr Clin Neurophysiol. 1996;  101 233-239
  • 28 Mima T, Toma K, Koshy B, Hallett M. Coherence between cortical and muscular activities after subcortical stroke.  Stroke. 2001;  32 2597-2601
  • 29 Shimizu T, Hosaki A, Hino T. et al . Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke.  Brain. 2002;  125 1896-1907
  • 30 Calautti C, Serrati C, Baron J C. Effects of age on brain activation during auditory-cued thumb-to-index opposition: A positron emission tomography study.  Stroke. 2001;  32 139-146
  • 31 Hutchinson S, Kobayashi M, Horkan C M. et al . Age-related differences in movement representation.  Neuroimage. 2002;  17 1720-1728
  • 32 Fernandez G, Greiff A de, Oertzen J von. et al . Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation.  Neuroimage. 2001;  14 585-594
  • 33 Johansen-Berg H, Rushworth M F, Bogdanovic M D. et al . The role of ipsilateral premotor cortex in hand movement after stroke.  Proc Natl Acad Sci USA. 2002;  99 14518-14523
  • 34 Nudo R J, Milliken G W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys.  J Neurophysiol. 1996;  75 2144-2149
  • 35 Nudo R J, Wise B M, SiFuentes F, Milliken G W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct.  Science. 1996;  272 1791-1794
  • 36 Liepert J, Bauder H, Wolfgang H R. et al . Treatment-induced cortical reorganization after stroke in humans.  Stroke. 2000;  31 1210-1216
  • 37 Feeney D M. From laboratory to clinic: noradrenergic enhancement of physical therapy for stroke or trauma patients.  Adv Neurol. 1997;  73 383-394
  • 38 Goldstein L B. Effects of amphetamines and small related molecules on recovery after stroke in animals and man.  Neuropharmacology. 2000;  39 852-859
  • 39 Walker-Batson D, Smith P, Curtis S. et al . Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence.  Stroke. 1995;  26 2254-2259
  • 40 Scheidtmann K, Fries W, Müller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study.  Lancet. 2001;  358 787-790

Priv.-Doz. Dr. med. Gereon Nelles

Klinik und Poliklinik für Neurologie · Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

eMail: gereon.nelles@uni-essen.de

    >