Planta Med 2003; 69(11): 984-989
DOI: 10.1055/s-2003-45142
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Theasinensin A, a Tea Polyphenol Formed from (-)-Epigallocatechin Gallate, Suppresses Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus

Tsutomu Hatano1 , Miwako Kusuda1 , Mami Hori1 , Sumiko Shiota2 , 3 , Tomofusa Tsuchiya2 , Takashi Yoshida1
  • 1Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
  • 2Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
  • 3Present address: Department of Microbiology, Faculty of Pharmaceutical Sciences, Shujitu University, Okayama, Japan
Further Information

Publication History

Received: April 14, 2003

Accepted: July 12, 2003

Publication Date:
09 January 2004 (online)

Abstract

When (-)-epigallocatechin gallate (EGCG), the main constituent of tea polyphenols, was kept in a neutral buffer, it decomposed rapidly to give theasinensin A as the major product. Theasinensin A suppressed the oxacillin resistance of methicillin-resistant Staphylococcus aureus (MRSA). In the presence of theasinensin A (3.5 × 10 - 5 M), the minimum inhibitory concentrations (MICs) of oxacillin decreased from 256 or 64 μg/mL to 4 μg/mL for the MRSA strains used. The presence of this compound (3.5 × 10 - 5 M) also decreased the MIC of other β-lactam (penicillin G, from 32 μg/mL to 0.125 - 0.5 μg/mL; ampicillin, from 16 - 32 μg/mL to 0.5 - 1 μg/mL) and aminoglycoside (streptomycin, from 4 - 16 μg/mL to 0.125 - 4 μg/mL) antibiotics for the MRSA strains.

Abbreviations

CFU:colony forming unit

CSMHB:cation-supplemented Mueller-Hinton broth

DETAPAC:diethylenetriaminepentaacetic acid

EGCG:(-)-epigallocatechin gallate

HPLC:high-performance liquid chromatography

MIC:minimum inhibitory concentration

MRSA:methicillin-resistant Staphylococcus aureus

MSSA:methicillin-sensitive Staphylococcus aureus

NMR:nuclear magnetic resonance

PBP2′:penicillin-binding protein 2′

References

  • 1 Okuda T, Mori K, Hatano T. Relationship of the structures of tannins to the binding activities with hemoglobin and methylene blue.  Chemical & Pharmaceutical Bulletin. 1985;  33 1424-33
  • 2 Okuda T, Kimura Y, Yoshida T, Hatano T, Okuda H, Arichi S. Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver.  Chemical & Pharmaceutical Bulletin. 1983;  31 1625-31
  • 3 Iwata S, Fukaya Y, Nakazawa K, Okuda T. Effects of the oxidative damage of mouse ocular lens I. Using the oxidative damage model induced by the xanthine-xanthine oxidase system.  Journal of Ocular Pharmacology. 1987;  3 227-38
  • 4 Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T. Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical.  Chemical & Pharmaceutical Bulletin. 1989;  37 2016-21
  • 5 Yoshizawa S, Horiuchi T, Fujiki H, Yoshida T, Okuda T, Sugimura T. Antitumor promoting activity of (-)-epigallocatechin gallate, the main constituent of ”tannin” in green tea.  Phytotherapy Research. 1987;  1 44-7
  • 6 Fujita Y, Yamane T, Tanaka M, Kuwata K, Okuzumi J, Takahashi T, Fujiki H, Okuda T. Inhibitory effect of (-)-epigallocatechin gallate on carcinogenesis with N-ethyl-N′-nitro-N-nitrosoguanidine in mouse duodenum.  Japanese Journal of Cancer Research. 1989;  80 503-5
  • 7 Zhao W -H, Hu Z -Q, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus .  Antimicrobial Agents and Chemotherapy. 2001;  45 1737-42
  • 8 Shiota S, Shimizu M, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T. Marked reduction in the minimum inhibitory concentration (MIC) of β-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis) .  Biological & Pharmacological Bulletin. 1999;  22 1388-90
  • 9 Unno T, Kondo K, Itakura H, Takeo T. Analysis of (-)-epigallocatechin gallate in human serum obtained after ingesting green tea.  Bioscience, Biotechnology and Biochemistry. 1996;  60 2066-8
  • 10 Nakagawa K, Miyazawa T. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma.  Analytical Biochemistry. 1997;  248 41-9
  • 11 Zhu M, Chen Y, Li R C. Oral absorption and bioavailability of tea catechins.  Planta Medica. 2000;  66 444-7
  • 12 Kohri T, Matsumoto N, Yamakawa M, Suzuki M, Nanjo F, Hara Y, Oku N. Metabolic fate of (-)-[4 - 3 H]epigallocatechin gallate in rats after oral administration.  Journal of Agriculture and Food Chemistry. 2001;  49 4102-12
  • 13 Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee M -J, Ho C -T, Yang C S. Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats.  Chemical Research in Toxicology. 2002;  15 1042-50
  • 14 Valcic S, Muders A, Jacobsen N E, Liebler D C, Timmermann B N. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxy radicals.  Chemical Research in Toxicology. 1999;  12 382-6
  • 15 Zu N, Huang T -C, Yu Y, LaVoie E J, Yang C S, Ho C -T. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H2O2 .  Journal of Agricultural and Food Chemistry. 2000;  48 979-81
  • 16 Valcic S, Burr J A, Timmermann B N, Liebler D C. Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxy radicals.  Chemical Research in Toxicology. 2000;  13 801-10
  • 17 Tanaka T, Mine C, Inoue K, Matsuda M, Kouno I. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinine in the synthesis and degradation of theaflavin.  Journal of Agricultural and Food Chemistry. 2002;  50 2142-48
  • 18 Okuda T, Yoshida T, Hatano T, Mori K, Fukuda T. Fractionation of pharmacologically active plant polyphenols by centrifugal partition chromatography.  Journal of Liquid Chromatography. 1990;  13 3637-50
  • 19 Nonaka G, Kawahara O, Nishioka I. Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea leaf.  (1) Chemical & Pharmaceutical Bulletin. 1983;  31 3906-14
  • 20 Hashimoto M, Nonaka G, Nishioka I. Tannins and related compounds. LXIX. Isolation and structure elucidation of B,B′-linked bisflavanoids, theasinensins D - G and oolongtheanin from oolong tea. (2).  Chemical & Pharmaceutical Bulletin. 1988;  36 1676-84
  • 21 Bradfield A E, Penny M. The catechins of green tea. Part II. Journal of the Chemical Society, Abstracts 1948: 2249-54
  • 22 Wilkins C K, de Bruijn J, Korver O, Frost D J, Weinges K. Isolation and identification of (-)-gallocatechin gallate and circular dichroism of green tea flavanols.  Journal of Science, Food and Agriculture. 1971;  22 480-4

Dr. T. Hatano

Faculty of Pharmaceutical Sciences

Okayama University

Tsushima

Okayama 700-8530

Japan

Fax: +81-86-251-7936

Email: hatano@pharm.okayama-u.ac.jp