Subscribe to RSS
DOI: 10.1055/s-2003-45142
© Georg Thieme Verlag Stuttgart · New York
Theasinensin A, a Tea Polyphenol Formed from (-)-Epigallocatechin Gallate, Suppresses Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus
Publication History
Received: April 14, 2003
Accepted: July 12, 2003
Publication Date:
09 January 2004 (online)
Abstract
When (-)-epigallocatechin gallate (EGCG), the main constituent of tea polyphenols, was kept in a neutral buffer, it decomposed rapidly to give theasinensin A as the major product. Theasinensin A suppressed the oxacillin resistance of methicillin-resistant Staphylococcus aureus (MRSA). In the presence of theasinensin A (3.5 × 10 - 5 M), the minimum inhibitory concentrations (MICs) of oxacillin decreased from 256 or 64 μg/mL to 4 μg/mL for the MRSA strains used. The presence of this compound (3.5 × 10 - 5 M) also decreased the MIC of other β-lactam (penicillin G, from 32 μg/mL to 0.125 - 0.5 μg/mL; ampicillin, from 16 - 32 μg/mL to 0.5 - 1 μg/mL) and aminoglycoside (streptomycin, from 4 - 16 μg/mL to 0.125 - 4 μg/mL) antibiotics for the MRSA strains.
Abbreviations
CFU:colony forming unit
CSMHB:cation-supplemented Mueller-Hinton broth
DETAPAC:diethylenetriaminepentaacetic acid
EGCG:(-)-epigallocatechin gallate
HPLC:high-performance liquid chromatography
MIC:minimum inhibitory concentration
MRSA:methicillin-resistant Staphylococcus aureus
MSSA:methicillin-sensitive Staphylococcus aureus
NMR:nuclear magnetic resonance
PBP2′:penicillin-binding protein 2′
Key words
Camellia sinensis - Theaceae - epigallocatechin gallate - theasinensin A - gallic acid - polyphenol - MRSA - antibiotic resistance
References
- 1 Okuda T, Mori K, Hatano T. Relationship of the structures of tannins to the binding activities with hemoglobin and methylene blue. Chemical & Pharmaceutical Bulletin. 1985; 33 1424-33
- 2 Okuda T, Kimura Y, Yoshida T, Hatano T, Okuda H, Arichi S. Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Chemical & Pharmaceutical Bulletin. 1983; 31 1625-31
- 3 Iwata S, Fukaya Y, Nakazawa K, Okuda T. Effects of the oxidative damage of mouse ocular lens I. Using the oxidative damage model induced by the xanthine-xanthine oxidase system. Journal of Ocular Pharmacology. 1987; 3 227-38
- 4 Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T. Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chemical & Pharmaceutical Bulletin. 1989; 37 2016-21
- 5 Yoshizawa S, Horiuchi T, Fujiki H, Yoshida T, Okuda T, Sugimura T. Antitumor promoting activity of (-)-epigallocatechin gallate, the main constituent of ”tannin” in green tea. Phytotherapy Research. 1987; 1 44-7
- 6 Fujita Y, Yamane T, Tanaka M, Kuwata K, Okuzumi J, Takahashi T, Fujiki H, Okuda T. Inhibitory effect of (-)-epigallocatechin gallate on carcinogenesis with N-ethyl-N′-nitro-N-nitrosoguanidine in mouse duodenum. Japanese Journal of Cancer Research. 1989; 80 503-5
- 7 Zhao W -H, Hu Z -Q, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus . Antimicrobial Agents and Chemotherapy. 2001; 45 1737-42
- 8 Shiota S, Shimizu M, Mizushima T, Ito H, Hatano T, Yoshida T, Tsuchiya T. Marked reduction in the minimum inhibitory concentration (MIC) of β-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis) . Biological & Pharmacological Bulletin. 1999; 22 1388-90
- 9 Unno T, Kondo K, Itakura H, Takeo T. Analysis of (-)-epigallocatechin gallate in human serum obtained after ingesting green tea. Bioscience, Biotechnology and Biochemistry. 1996; 60 2066-8
- 10 Nakagawa K, Miyazawa T. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Analytical Biochemistry. 1997; 248 41-9
- 11 Zhu M, Chen Y, Li R C. Oral absorption and bioavailability of tea catechins. Planta Medica. 2000; 66 444-7
- 12 Kohri T, Matsumoto N, Yamakawa M, Suzuki M, Nanjo F, Hara Y, Oku N. Metabolic fate of (-)-[4 - 3 H]epigallocatechin gallate in rats after oral administration. Journal of Agriculture and Food Chemistry. 2001; 49 4102-12
- 13 Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee M -J, Ho C -T, Yang C S. Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chemical Research in Toxicology. 2002; 15 1042-50
- 14 Valcic S, Muders A, Jacobsen N E, Liebler D C, Timmermann B N. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxy radicals. Chemical Research in Toxicology. 1999; 12 382-6
- 15 Zu N, Huang T -C, Yu Y, LaVoie E J, Yang C S, Ho C -T. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H2O2 . Journal of Agricultural and Food Chemistry. 2000; 48 979-81
- 16 Valcic S, Burr J A, Timmermann B N, Liebler D C. Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxy radicals. Chemical Research in Toxicology. 2000; 13 801-10
- 17 Tanaka T, Mine C, Inoue K, Matsuda M, Kouno I. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinine in the synthesis and degradation of theaflavin. Journal of Agricultural and Food Chemistry. 2002; 50 2142-48
- 18 Okuda T, Yoshida T, Hatano T, Mori K, Fukuda T. Fractionation of pharmacologically active plant polyphenols by centrifugal partition chromatography. Journal of Liquid Chromatography. 1990; 13 3637-50
- 19 Nonaka G, Kawahara O, Nishioka I. Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea leaf. (1) Chemical & Pharmaceutical Bulletin. 1983; 31 3906-14
- 20 Hashimoto M, Nonaka G, Nishioka I. Tannins and related compounds. LXIX. Isolation and structure elucidation of B,B′-linked bisflavanoids, theasinensins D - G and oolongtheanin from oolong tea. (2). Chemical & Pharmaceutical Bulletin. 1988; 36 1676-84
- 21 Bradfield A E, Penny M. The catechins of green tea. Part II. Journal of the Chemical Society, Abstracts 1948: 2249-54
- 22 Wilkins C K, de Bruijn J, Korver O, Frost D J, Weinges K. Isolation and identification of (-)-gallocatechin gallate and circular dichroism of green tea flavanols. Journal of Science, Food and Agriculture. 1971; 22 480-4
Dr. T. Hatano
Faculty of Pharmaceutical Sciences
Okayama University
Tsushima
Okayama 700-8530
Japan
Fax: +81-86-251-7936
Email: hatano@pharm.okayama-u.ac.jp