Zusammenfassung
Ziel: Experimentelle Bestimmung der Ortsdosisleistung des Untersuchers in der invasiven Kardiologie in Abhängigkeit von Bodenhöhe und Röhrenangulation. Material und Methoden: An einem Alderson-Rando-Phantom zur Simulation des Patienten bestimmten wir die Durchleuchtungs-Körperdosis (µSv/h) in Untersucherposition in 20-cm-Schritten von 20 - 200 cm Körperhöhe für alle Röhrenangulationen in 30°-Schritten von rechts anterior oblique (RAO) 90° bis links anterior oblique (LAO) 90° und, sofern seitens der Gerätegeometrie realisierbar, in 10°-Schritten in den kraniokaudalen Ebenen bis 40°. Ergebnisse: Die Untersucher-Körperdosis steigt von einem Minimum zwischen postero-anteriorem (PA) 0°-Strahlengang und RAO 30° kontinuierlich auf das doppelte bzw. 5- bis 10fache Niveau in weit lateral angulierter RAO- bzw. LAO-Projektion an. Kraniokaudale 30°-Angulationen verursachen 2- bis 3fach höhere Untersucher-Körperdosisleistungen. Maximalwerte in weit angulierten kranialen (+) Projektionen wandern von 160 cm Bodenhöhe in LAO 90°/30°+ (3500) über 50 cm Bodenhöhe in PA 0°/30° + (400 µSv/h) und bei ≥ 170 (600 µSv/h) und ≤ 40 cm (300 µSv/h) Bodenhöhe in RAO 90°/30° + Projektion. Kaudale (-) Angulationen verursachen etwas geringere Körperdosen mit Maximalwerten bei 120 cm Bodenhöhe in LAO 90°/30°- (3000 µSv/h), bei 50 cm Bodenhöhe in PA 0°/30°- Projektion (300 µSv/h) und bei ≥ 170 (900 µSv/h) und ≤ 40 cm (500 µSv/h) Bodenhöhe in RAO 90°/30°- Projektion. Schlussfolgerungen: Vorliegende aussagefähige Datensammlung zur Untersucher-Streustrahlenexposition in Abhängigkeit von Röhrenangulation und Bodenhöhe ermöglicht kardiologischen Interventionalisten, ihre bevorzugten Projektionen strahlenhygienisch zu überprüfen und gegebenenfalls zu verändern.
Abstract
Purpose: To map in an experimental setting of the local personal operator dose for 55 selected tube angulations as a function of body height above ground. Materials and Methods: On an Alderson-Rando phantom representing the patient, we performed measurements of fluoroscopy scatter radiation (µSv/h) at the operator’s position, for the range of 20 - 200 cm body height, for all tube angulations in 30° steps from right anterior oblique (RAO) 90° to left anterior oblique (LAO) 90° position, and for planes angulated cranially (+) and caudally (-) by 10°, 20°, 30°, and 40°, unless rendered unfeasible by geometric circumstances. Results: Radiation exposure to the operator is lowest between postero-anterior (PA) 0° and RAO 30° angulation, and continuously increases by a factor of approx. 2 towards steep RAO, and to factors of 5 - 10 towards steep LAO views. Craniocaudal angulation at 30° likewise generates personal dose levels 2 - 3 times as high. For all body heights and all LAO tube angulations, the corridor between 0° - 10° caudal angulation generates the least personal scatter dose, likewise irrespective of body height and craniocaudal tube angulations, the corridor between 0° PA - 30° RAO angulation. RAO angulations, however, being inverse to the respective 90° LAO angulations, are generally 4 to 5 times less radiation extensive. Peak levels of the local personal dose vary from 160 cm body height for steep cranial LAO 90°/30°+ views (3,500 µSv/h), to 50 cm for cranial PA 0°/30°+ (400 µSv/h), and to ≥ 170 cm (600 µSv/h) and ≤ 40 cm (300 µSv/h) for steep cranial RAO 90°/30°+ views. Caudal angulations generate slightly lower doses, with peak levels at 120 cm for LAO 90°/30°- views (3,000 µSv/h), at 50 cm for PA 0°/30°- views (300 µSv/h), and above 170 cm (900 µSv/h) and below 40 cm (500 µSv/h) for steep caudal RAO 90°/30°- views. Conclusion: The present experimental study on scatter radiation to the operator, as a function of body height and tube angulation, offers a representative data tool for all interventionists for use in invasive cardiology, to confirm the radiation safety of their favored coronary views, or to encourage less radiation-intensive angulations. Moreover, it provides new knowledge about special risks for crucial body regions and enables effectve radiation protection strategies.
Key words
Dosimetry - radiation safety - operator’s personal dose - coronary angiography - education
Literatur
-
1
Vano E, Gonzalez L, Guibelalde E. et al .
Radiation exposure to medical staff in interventional and cardiac radiology.
Br J Radiol.
1998;
71
954-960
-
2
Chong N s, Yin W S, Chan P. et al .
Evaluation of absorbed radiation dose to working staff during cardiac catheterization procedures.
Zhonhua Yi Xue Za Zhi.
2000;
63
816-821
-
3
Renaud L.
A 5-year follow up of the radiation exposure to in-room personnel during cardiac catheterization.
Health Phys.
1992;
62
10-15
-
4
Vano E, Gonzalez L, Bebeytez F. et al .
Lens injuries induced by occupational exposure in non-optimised interventional radiology laboratories.
Br J Radiol.
1998;
71
728-733
-
5
Valentin J.
Avoidance of radiation injuries from medical interventional procedures.
Ann ICRP.
2000;
30
7-67
-
6
Folkerts K H, Münz A, Jung S.
Estimation of radiation exposure and radiation risk to staff of cardiac catheterization laboratories.
Z Kardiol.
1997;
86
258-263
-
7
Finkelstein M M.
Is brain cancer an occupational disease of cardiologists?.
Can J Cardiol.
1998;
14
1385-1388
-
8
Kuon E, Birkel J, Schmitt M. et al .
Radiation exposure benefit of a lead cap in invasive cardiology.
Heart.
2003;
89
1205-1210
-
9
Kuon E, Schmitt M, Dahm J B.
Significant reduction of radiation exposure to staff during cardiac interventions by analysis of radiation leakage and improved lead shielding.
Am J Cardiol.
2002;
89
44-49
-
10
Kuon E, Dorn C, Schmitt M. et al .
Radiation dose reduction in invasive cardiology by restriction to adequate instead of optimized picture quality.
Health Phys.
2003;
84
626-631
-
11
Kuon E, Glaser C, Dahm J B.
Effective techniques to reduce radiation dosage to patients undergoing invasive cardiac procedures.
Br J Radiol.
2003;
76
406-413
-
12
Kuon E, Günther M, Gefeller O. et al .
Standardization of occupational dose to patient’s DAP enables reliable assessment of radiation protection devices in invasive cardiology.
Fortschr Röntgenstr.
2003;
175
1545-1550
-
13
Seifert H, Roth R, Urbancyk K. et al .
Vergleich der Strahlenexposition von Patienten bei ausgewählten interventionellen und angiographischen Maßnahmen (erste Ergebnisse.
Fortschr Röntgenstr.
1999;
170
185-190
-
14
Golder W, Weiner G.
Bodily structures and radiation exposures in static X-ray procedures: A contribution to determine national reference data.
Fortschr Röntgenstr.
2001;
173
563-568
-
15
Golder W, Weiner G.
Bodily structures and radiation exposures in dynamic X-ray procedures: A contribution to determine national reference data.
Fortschr Röntgenstr.
2001;
173
756-762
-
16
Marshall N W, Faulkner K.
The dependence of the scattered radiation dose to personnel on technique factors in diagnostic radiology.
Br J Radiol.
1992;
65
44-49
-
17
Williams J R.
Scatter dose estimation based on dose-area product and the specification of radiation barriers.
Br J Radiol.
1996;
69
1032-1037
-
18
Heuschmid M, Küttner A, Flohr T. et al .
Visualization of coronary arteries in CT as assessed by a new 16 slice technology and reduced gantry rotation time: first experiences.
Fortschr Röntgenstr.
2002;
174
721-724
-
19
Flohr T, Bruder H, Stierstorfer K. et al .
New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging.
Fortschr Röntgenstr.
2002;
174
1022-1027
-
20
Poll L W, Cohnen M, Brachten S. et al .
Dose reduction in multi-slice CT of the heart by use of ECG controlled tube current modulation (“ECG pulsing”): phantom measurements.
Fortschr Röntgenstr.
2002;
174
1500-1505
-
21
Kalden P, Mohrs O, Kreitner K F. et al .
Preliminary results of coronary artery examination using a 3D-Navigator sequence on a high performance MR system.
Fortschr Röntgenstr.
2002;
174
183-186
-
22
Sommer T, Hofer U, Hackenbroch M. et al .
Submillimeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease.
Fortschr Röntgenstr.
2003;
174
459-466
-
23
Sandstede J, Beer M, Pabst T. et al .
Primary diagnosis of coronary artery disease by MRI and CT.
Fortschr Röntgenstr.
2003;
175
477-483
-
24
Kuon E, Schmitt M, Dorn C. et al .
Predialing the number of cinegraphic frames enables an effective patient dose due to coronary angiography of 0.8 mSv.
Fortschr Röntgenstr.
2003;
175
1706-1710
-
25
Padovani R, Rodella C A.
Staff dosimetry in interventional cardiology.
Radiat Prot Dosimetry.
2001;
94
99-103
-
26
Watson L E, Riggs M W, Bourland P D.
Radiation exposure during cardiology fellowship training.
Health Phys.
1997;
73
690-693
-
27
Kuon E, Dahm J B.
Effective training in radiation attenuating techniques requires long-term cardiology fellowship supervision.
Eur J Allied Health.
2002;
3
20-25
-
28
Kuon E, Niederst P N, Dahm J B.
Usefulness of rotational spin for coronary angiography in patients with advanced renal insufficiency.
Am J Cardiol.
2002;
90
369-373
-
29
Wedegartner U, Thurmann H, Schmidt R. et al .
Radiation exposure of the head, midface and pelvis in multislice CT (MSCT): comparison with single-slice CT (SSCT).
Fortschr Röntgenstr.
2003;
175
234-238
-
30
Watson R M.
Radiation exposure: clueless in the cath lab, or sayonara ALARA.
Cathet Cardiovasc Diagn.
1997;
42
126-127
-
31
Pitney M R, Allan R M, Giles R W. et al .
Modifying fluoroscopic view reduces operator exposure during coronary angioplasty.
J Am Coll Cardiol.
1994;
24
1660-1663
-
32
Begg F R, Hans L F.
Radiation exposure to angiographer during coronary arteriography using the u-arm image amplifier.
Catheter Cardiovasc Diagn.
1975;
1
261-265
-
33
Jeans S P, Faulkner K, Love H G. et al .
An investigation of the radiation dose to staff during cardiological studies.
Br J Radiol.
1985;
58
419-428
-
34 Moore R J. Imaging principles of cardiac angiography. Rockvill; Aspen Publishers 1990
-
35
Brateman L.
The AAPM/RSNA physics tutorial for residents. Radiation safety considerations for diagnostic radiology personnel.
RadioGraphics.
1999;
19
1037-1055
-
36
Kuon E, Dahm J B.
Identification of radiation-attenuating angulations in invasive cardiology.
Z Kardiol.
2003;
92 (Suppl 2)
II99
Dr. med. Eberhard Kuon
Klinik Fränkische Schweiz
Feuersteinstraße 2
91320 Ebermannstadt
Telefon: +49-91 94/5 53 86
Fax: +49-91 94/5 53 87
eMail: Eberhard.Kuon@klinik-fraenkische-schweiz.de