Subscribe to RSS
DOI: 10.1055/s-2004-813010
© Georg Thieme Verlag Stuttgart · New York
Höhe und Röhrenangulation als die Determinanten der möglichen Untersucher-Ortsdosisleistung in der invasiven Kardiologie
Personal Operator Dose in Invasive Cardiology as a Function of Body Height and Tube AngulationPublication History
Publication Date:
06 May 2004 (online)

Zusammenfassung
Ziel: Experimentelle Bestimmung der Ortsdosisleistung des Untersuchers in der invasiven Kardiologie in Abhängigkeit von Bodenhöhe und Röhrenangulation. Material und Methoden: An einem Alderson-Rando-Phantom zur Simulation des Patienten bestimmten wir die Durchleuchtungs-Körperdosis (µSv/h) in Untersucherposition in 20-cm-Schritten von 20 - 200 cm Körperhöhe für alle Röhrenangulationen in 30°-Schritten von rechts anterior oblique (RAO) 90° bis links anterior oblique (LAO) 90° und, sofern seitens der Gerätegeometrie realisierbar, in 10°-Schritten in den kraniokaudalen Ebenen bis 40°. Ergebnisse: Die Untersucher-Körperdosis steigt von einem Minimum zwischen postero-anteriorem (PA) 0°-Strahlengang und RAO 30° kontinuierlich auf das doppelte bzw. 5- bis 10fache Niveau in weit lateral angulierter RAO- bzw. LAO-Projektion an. Kraniokaudale 30°-Angulationen verursachen 2- bis 3fach höhere Untersucher-Körperdosisleistungen. Maximalwerte in weit angulierten kranialen (+) Projektionen wandern von 160 cm Bodenhöhe in LAO 90°/30°+ (3500) über 50 cm Bodenhöhe in PA 0°/30° + (400 µSv/h) und bei ≥ 170 (600 µSv/h) und ≤ 40 cm (300 µSv/h) Bodenhöhe in RAO 90°/30° + Projektion. Kaudale (-) Angulationen verursachen etwas geringere Körperdosen mit Maximalwerten bei 120 cm Bodenhöhe in LAO 90°/30°- (3000 µSv/h), bei 50 cm Bodenhöhe in PA 0°/30°- Projektion (300 µSv/h) und bei ≥ 170 (900 µSv/h) und ≤ 40 cm (500 µSv/h) Bodenhöhe in RAO 90°/30°- Projektion. Schlussfolgerungen: Vorliegende aussagefähige Datensammlung zur Untersucher-Streustrahlenexposition in Abhängigkeit von Röhrenangulation und Bodenhöhe ermöglicht kardiologischen Interventionalisten, ihre bevorzugten Projektionen strahlenhygienisch zu überprüfen und gegebenenfalls zu verändern.
Abstract
Purpose: To map in an experimental setting of the local personal operator dose for 55 selected tube angulations as a function of body height above ground. Materials and Methods: On an Alderson-Rando phantom representing the patient, we performed measurements of fluoroscopy scatter radiation (µSv/h) at the operator’s position, for the range of 20 - 200 cm body height, for all tube angulations in 30° steps from right anterior oblique (RAO) 90° to left anterior oblique (LAO) 90° position, and for planes angulated cranially (+) and caudally (-) by 10°, 20°, 30°, and 40°, unless rendered unfeasible by geometric circumstances. Results: Radiation exposure to the operator is lowest between postero-anterior (PA) 0° and RAO 30° angulation, and continuously increases by a factor of approx. 2 towards steep RAO, and to factors of 5 - 10 towards steep LAO views. Craniocaudal angulation at 30° likewise generates personal dose levels 2 - 3 times as high. For all body heights and all LAO tube angulations, the corridor between 0° - 10° caudal angulation generates the least personal scatter dose, likewise irrespective of body height and craniocaudal tube angulations, the corridor between 0° PA - 30° RAO angulation. RAO angulations, however, being inverse to the respective 90° LAO angulations, are generally 4 to 5 times less radiation extensive. Peak levels of the local personal dose vary from 160 cm body height for steep cranial LAO 90°/30°+ views (3,500 µSv/h), to 50 cm for cranial PA 0°/30°+ (400 µSv/h), and to ≥ 170 cm (600 µSv/h) and ≤ 40 cm (300 µSv/h) for steep cranial RAO 90°/30°+ views. Caudal angulations generate slightly lower doses, with peak levels at 120 cm for LAO 90°/30°- views (3,000 µSv/h), at 50 cm for PA 0°/30°- views (300 µSv/h), and above 170 cm (900 µSv/h) and below 40 cm (500 µSv/h) for steep caudal RAO 90°/30°- views. Conclusion: The present experimental study on scatter radiation to the operator, as a function of body height and tube angulation, offers a representative data tool for all interventionists for use in invasive cardiology, to confirm the radiation safety of their favored coronary views, or to encourage less radiation-intensive angulations. Moreover, it provides new knowledge about special risks for crucial body regions and enables effectve radiation protection strategies.
Key words
Dosimetry - radiation safety - operator’s personal dose - coronary angiography - education
Literatur
- 1 Vano E, Gonzalez L, Guibelalde E. et al . Radiation exposure to medical staff in interventional and cardiac radiology. Br J Radiol. 1998; 71 954-960
- 2 Chong N s, Yin W S, Chan P. et al . Evaluation of absorbed radiation dose to working staff during cardiac catheterization procedures. Zhonhua Yi Xue Za Zhi. 2000; 63 816-821
- 3 Renaud L. A 5-year follow up of the radiation exposure to in-room personnel during cardiac catheterization. Health Phys. 1992; 62 10-15
- 4 Vano E, Gonzalez L, Bebeytez F. et al . Lens injuries induced by occupational exposure in non-optimised interventional radiology laboratories. Br J Radiol. 1998; 71 728-733
- 5 Valentin J. Avoidance of radiation injuries from medical interventional procedures. Ann ICRP. 2000; 30 7-67
- 6 Folkerts K H, Münz A, Jung S. Estimation of radiation exposure and radiation risk to staff of cardiac catheterization laboratories. Z Kardiol. 1997; 86 258-263
- 7 Finkelstein M M. Is brain cancer an occupational disease of cardiologists?. Can J Cardiol. 1998; 14 1385-1388
- 8 Kuon E, Birkel J, Schmitt M. et al . Radiation exposure benefit of a lead cap in invasive cardiology. Heart. 2003; 89 1205-1210
- 9 Kuon E, Schmitt M, Dahm J B. Significant reduction of radiation exposure to staff during cardiac interventions by analysis of radiation leakage and improved lead shielding. Am J Cardiol. 2002; 89 44-49
- 10 Kuon E, Dorn C, Schmitt M. et al . Radiation dose reduction in invasive cardiology by restriction to adequate instead of optimized picture quality. Health Phys. 2003; 84 626-631
- 11 Kuon E, Glaser C, Dahm J B. Effective techniques to reduce radiation dosage to patients undergoing invasive cardiac procedures. Br J Radiol. 2003; 76 406-413
- 12 Kuon E, Günther M, Gefeller O. et al . Standardization of occupational dose to patient’s DAP enables reliable assessment of radiation protection devices in invasive cardiology. Fortschr Röntgenstr. 2003; 175 1545-1550
- 13 Seifert H, Roth R, Urbancyk K. et al . Vergleich der Strahlenexposition von Patienten bei ausgewählten interventionellen und angiographischen Maßnahmen (erste Ergebnisse. Fortschr Röntgenstr. 1999; 170 185-190
- 14 Golder W, Weiner G. Bodily structures and radiation exposures in static X-ray procedures: A contribution to determine national reference data. Fortschr Röntgenstr. 2001; 173 563-568
- 15 Golder W, Weiner G. Bodily structures and radiation exposures in dynamic X-ray procedures: A contribution to determine national reference data. Fortschr Röntgenstr. 2001; 173 756-762
- 16 Marshall N W, Faulkner K. The dependence of the scattered radiation dose to personnel on technique factors in diagnostic radiology. Br J Radiol. 1992; 65 44-49
- 17 Williams J R. Scatter dose estimation based on dose-area product and the specification of radiation barriers. Br J Radiol. 1996; 69 1032-1037
- 18 Heuschmid M, Küttner A, Flohr T. et al . Visualization of coronary arteries in CT as assessed by a new 16 slice technology and reduced gantry rotation time: first experiences. Fortschr Röntgenstr. 2002; 174 721-724
- 19 Flohr T, Bruder H, Stierstorfer K. et al . New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Fortschr Röntgenstr. 2002; 174 1022-1027
- 20 Poll L W, Cohnen M, Brachten S. et al . Dose reduction in multi-slice CT of the heart by use of ECG controlled tube current modulation (“ECG pulsing”): phantom measurements. Fortschr Röntgenstr. 2002; 174 1500-1505
- 21 Kalden P, Mohrs O, Kreitner K F. et al . Preliminary results of coronary artery examination using a 3D-Navigator sequence on a high performance MR system. Fortschr Röntgenstr. 2002; 174 183-186
- 22 Sommer T, Hofer U, Hackenbroch M. et al . Submillimeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease. Fortschr Röntgenstr. 2003; 174 459-466
- 23 Sandstede J, Beer M, Pabst T. et al . Primary diagnosis of coronary artery disease by MRI and CT. Fortschr Röntgenstr. 2003; 175 477-483
- 24 Kuon E, Schmitt M, Dorn C. et al . Predialing the number of cinegraphic frames enables an effective patient dose due to coronary angiography of 0.8 mSv. Fortschr Röntgenstr. 2003; 175 1706-1710
- 25 Padovani R, Rodella C A. Staff dosimetry in interventional cardiology. Radiat Prot Dosimetry. 2001; 94 99-103
- 26 Watson L E, Riggs M W, Bourland P D. Radiation exposure during cardiology fellowship training. Health Phys. 1997; 73 690-693
- 27 Kuon E, Dahm J B. Effective training in radiation attenuating techniques requires long-term cardiology fellowship supervision. Eur J Allied Health. 2002; 3 20-25
- 28 Kuon E, Niederst P N, Dahm J B. Usefulness of rotational spin for coronary angiography in patients with advanced renal insufficiency. Am J Cardiol. 2002; 90 369-373
- 29 Wedegartner U, Thurmann H, Schmidt R. et al . Radiation exposure of the head, midface and pelvis in multislice CT (MSCT): comparison with single-slice CT (SSCT). Fortschr Röntgenstr. 2003; 175 234-238
- 30 Watson R M. Radiation exposure: clueless in the cath lab, or sayonara ALARA. Cathet Cardiovasc Diagn. 1997; 42 126-127
- 31 Pitney M R, Allan R M, Giles R W. et al . Modifying fluoroscopic view reduces operator exposure during coronary angioplasty. J Am Coll Cardiol. 1994; 24 1660-1663
- 32 Begg F R, Hans L F. Radiation exposure to angiographer during coronary arteriography using the u-arm image amplifier. Catheter Cardiovasc Diagn. 1975; 1 261-265
- 33 Jeans S P, Faulkner K, Love H G. et al . An investigation of the radiation dose to staff during cardiological studies. Br J Radiol. 1985; 58 419-428
- 34 Moore R J. Imaging principles of cardiac angiography. Rockvill; Aspen Publishers 1990
- 35 Brateman L. The AAPM/RSNA physics tutorial for residents. Radiation safety considerations for diagnostic radiology personnel. RadioGraphics. 1999; 19 1037-1055
- 36 Kuon E, Dahm J B. Identification of radiation-attenuating angulations in invasive cardiology. Z Kardiol. 2003; 92 (Suppl 2) II99
Dr. med. Eberhard Kuon
Klinik Fränkische Schweiz
Feuersteinstraße 2
91320 Ebermannstadt
Phone: +49-91 94/5 53 86
Fax: +49-91 94/5 53 87
Email: Eberhard.Kuon@klinik-fraenkische-schweiz.de