Horm Metab Res 2003; 35(11/12): 836-842
DOI: 10.1055/s-2004-814145
Original
© Georg Thieme Verlag Stuttgart · New York

Combined Effects of Tamoxifen and a Chimeric Humanized Single Chain Antibody against the Type I IGF Receptor on Breast Tumor Growth In vivo

J.-J.  Ye1 , S.-J.  Liang1 , N.  Guo1 , S.-L.  Li1 , A.  M.  Wu1 , S.  Giannini1 [*] , D.  Sachdev2 , D.  Yee2 , N.  Brünner3 , D.  Ikle4 , Y.  Fujita-Yamaguchi1, 5
  • 1Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
  • 2Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
  • 3Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
  • 4Department of Biostatistics, City of Hope Medical Center, Duarte, CA 91010, USA
  • 5Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Japan
Further Information

Publication History

Received 29 August 2003

Accepted after Revision 3 November 2003

Publication Date:
07 January 2004 (online)

Abstract

Proliferative and anti-apoptotic actions of IGFs are mediated by the IGF-I receptor (IGF-IR), to which both IGF-I and -II bind with high affinity. We previously reported that αIGF-IR scFv-Fc (scFv-Fc) consisting of the αIGF-IR scFv and human IgG1 Fc domain retained general characteristics of the parental 1H7 monoclonal antibody, and significantly suppressed MCF-7 tumor growth. We proposed IGF-IR down-regulation as a possible mechanism for inhibition of MCF-7 tumor growth. To further determine the therapeutic potentials of this approach, in vivo effects of this antibody on breast tumor growth were evaluated in the absence or presence of tamoxifen (Tam) using a T61 human breast tumor model. T61 xenograft growth in athymic mice was compared under five conditions, PBS, scFv-Fc, Tam, scFv-Fc+Tam, and control antibody. While treatment with PBS and control antibody did not affect T61 tumor growth, scFv-Fc, Tam, and scFv-Fc+Tam treatments significantly suppressed the tumor growth during the first two weeks of treatment. Although the growth inhibitory effect of scFv-Fc during the first two weeks was significant, the tumor grew as rapidly as PBS-treated tumors thereafter. This rapid tumor growth was suppressed when scFv-Fc was combined with Tam. Throughout four weeks, the combined Tam+scFv-Fc treatment was more effective in inhibiting the T61 tumor growth than scFv-Fc or Tam treatment alone. scFv-Fc treatment down-regulated IGF-IR which appears to contribute to tumor growth inhibition. This study provides evidence that simultaneous targeting of IGF-IR and the estrogen receptor may enhance the therapeutic effect.

References

  • 1 Daughaday W H. The possible autocrine/paracrine and endocrine roles of insulin-like growth factors of human tumors.  Endocrinology. 1990;  127 1-4
  • 2 Casella S J, Han V K, D’Ercole A J, Svoboda M E, van Wyk J J. Insulin-like growth factor II binding to the type I somatomedin receptor. Evidence for two high affinity binding sites.  J Biol Chem. 1986;  261 9268-9273
  • 3 Osborne C K, Coronado E B, Kitten L J, Arteaga C L, Fuqua S A, Ramasharma K, Marshall M, Li C H. Insulin-like growth factor-II (IGF-II): a potential autocrine/paracrine growth factor for human breast cancer acting via the IGF-I receptor.  Mol Endocrinol. 1989;  3 1701-1709
  • 4 Sakano K, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, Sato Y, Perdue J F, Fujita-Yamaguchi Y. The design, expression, and characterization of human insulin-like growth factor II mutants specific for either the IGF-II/cation independent mannose 6-phosphate receptor or IGF-I receptor.  J Biol Chem. 1992;  266 20 626-20 635
  • 5 Papa V, Gliozzo B, Clark G M, McGuire W L, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine I D, Pezzino V. Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer.  Cancer Res. 1993;  53 3736-3740
  • 6 Resnik J L, Reichar D B, Huey K, Webster N J, Seely B L. Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer.  Cancer Res. 1998;  58 1159-1164
  • 7 Dunn S E, Hardman R A, Kari F W, Barrett J C. Insulin-like growth factor 1 (IGF-1) alters drug sensitivity of HBL100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs.  Cancer Res. 1997;  57 2687-2693
  • 8 Gooch J L, Van Den Berg C L, Yee D. Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death-proliferative and anti-apoptotic effects.  Breast Cancer Res Treat. 1999;  56 1-10
  • 9 Arteaga C L, Osborne C K. Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor.  Cancer Res. 1989;  49 6237-6241
  • 10 Arteaga C L, Kitten L-J, Coronado E B, Jacobs S, Kull F C Jr, Allred D C, Osborne C K. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice.  J Clin Invest. 1989;  84 1418-1423
  • 11 Neuenschwander S, Roberts C T Jr, LeRoith D. Growth inhibition of MCF-7 breast cancer cells by stable expression of an insulin-like growth factor I receptor antisense ribonucleic acid.  Endocrinology. 1995;  136 4298-4303
  • 12 Li S-L, Liang S-J, Guo N, Wu A M, Fujita-Yamaguchi Y. Single chain antibodies against human insulin-like growth factor-I receptor: Expression, purification, and effect on tumor growth.  Cancer Immunol Immunother. 2000;  49 243-252
  • 13 Li S-L, Kato J, Paz I B, Kasuya J, Fujita-Yamaguchi Y. Two new monoclonal antibodies against the alpha subunit of the human insulin-like growth factor-I receptor.  Biochem Biophys Res Commun. 1993;  196 92-98
  • 14 Sachdev D, Li S-L, Hartell J S, Fujita-Yamaguchi Y, Miller J S, Yee D. A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I.  Cancer Res. 2003;  63 627-635
  • 15 Brünner N, Bastert G B, Poulsen H S, Spang-Thomsen M, Vindelov L, Nielsen A, Tommerup N, Elling F. Characterization of the T61 human breast carcinoma established in nude mice.  Eur J Cancer Clin Oncol. 1985;  21 833-843
  • 16 Fichera E, Liang S-J, Xu Z-D, Guo N, Mineo R, Fujita-Yamaguchi Y. A quantitative reverse transcription and polymerase chain reaction assay reveals increased expression of human insulin-like growth factor-II mRNA in some cancerous breast, bladder, and prostate tissues.  Growth Horm IGF Res. 2000;  10 61-70
  • 17 Li S-L, Goko H, Xu Z-D, Kimura G, Sun Y, Kawachi M H, Wilson T G, Wilczynski S, Fujita-Yamaguchi Y. Expression of insulin-like growth factor (IGF)-II in human prostate, breast, bladder, and paraganglioma tumors.  Cell Tissue Res. 1998;  291 469-479
  • 18 Yee D, Cullen K, Paik S, Perdue J, Hampton B, Schwartz A, Lippman M, Rosen N. Insulin-like growth factor II mRNA expression in human breast cancer.  Cancer Res. 1988;  48 6691-6696
  • 19 Brünner N, Yee D, Kern G, Spang-Thomsen M, Lippman M E, Cullen K J. Effect of endocrine therapy on growth of T61 human breast cancer xenografts is directly correlated to a specific down-regulation of insulin-like growth factor II (IGF-II). .  Eur J Cancer. 1993;  29A 562-569
  • 20 Brünner N, Spang-Thomsen M, Cullen K J. The T61 human breast cancer xenograft: An experimental model of estrogen therapy of breast cancer.  Breast Cancer Res Treat. 1997;  39 87-92
  • 21 Maloney D G, Grillo-Lopez A J, Bodkin D J, White C A, Liles T-M, Rayston I, Varns C, Rosenberg J, Levy R. IDEC-C2B8: Results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma.  J Clin Oncol. 1997;  15 3266-3274
  • 22 Reff M E, Carner K, Chambers K S, Chinn P C, Leonard J E, Raab R, Newman R A, Hanna N, Anderson D R. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20.  Blood. 1994;  83 435 -445
  • 23 Jackson J G, White M F, Yee D. Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells.  J Biol Chem. 1998;  17 9994-10 003
  • 24 Hailey J, Maxwell E, Koukouras K, Bishop W R, Pachter J A, Wang Y. Neutralizing anti-insulin-like growth factor receptor 1 antibodies inhibit receptor function and induce receptor downregulation in tumor cells.  Mol Cancer Therapeutics. 2002;  1 1348-1353
  • 25 Furlanetto R W. Receptor-mediated endocytosis and lysosomal processing of insulin-like growth factor I by mitogenically responsive cells.  Endocrinology. 1988;  122 2044-2053
  • 26 Hsu D, Knudson P E, Zapf A, Rodband G C, Olefsky J M. NPXY motif in the insulin-like growth factor receptor is required for efficient ligand-mediated receptor internalization and biological signaling.  Endocrinology. 1994;  134 744-750
  • 27 Zapf A, Hsu D, Olefsky J M. Comparison of the intracellular itineraries of insulin-like growth factor I and insulin and their receptors in Rat-1 fibroblasts.  Endocrinology. 1994;  134 2445-2452
  • 28 Guvakova M A, Surmacz E. Tamoxifen interferes with the insulin-like growth factor I receptor (IGF-IR) signaling pathway in breast cancer cells.  Cancer Res. 1997;  57 2606-2610
  • 29 Kanter-Lewensohn L, Girnita L, Girnita A, Dricu A, Olsson G, Leech L, Nilsson G, Hilding A, Wejde J, Brismar K, Larsson O. Tamoxifen-induced cell death in malignant melanoma cells: possible involvement of the insulin-like growth factor-1 (IGF-1) pathway.  Mol Cell Endocrinol. 2000;  156 131-137

1 Current address; Department of Clinical Pathophysiology, Endocrinology Unit, Diabetes and Metabolic Diseases Section, University of Florence, Florence, Italy

Y. Fujita-Yamaguchi, Ph. D. 

Department of Applied Biochemistry · Tokai University School of Engineering

1117 Kitakaname · Hiratsuka · Kanagawa 259-1292 · Japan

Phone: + 81 (463) 58-1211 ext. 4188 ·

Fax: + 81 (463) 50-2012

Email: yamaguch@keyaki.cc.u-tokai.ac.jp