Subscribe to RSS
DOI: 10.1055/s-2004-814148
Insulin-like Growth Factor-I Suppresses Degradation of the Pro-survival Transcription Factor Myocyte Enhancer Factor 2D (MEF2D) During Neuronal Apoptosis
Publication History
Received 30 August 2003
Accepted after Revision 22 October 2003
Publication Date:
07 January 2004 (online)
Abstract
Cultured rat cerebellar granule neurons (CGNs) require depolarization-mediated calcium influx for survival. Calcium regulates the activity of the pro-survival transcription factor, myocyte enhancer factor 2D (MEF2D). MEF2D is hyperphosphorylated and degraded in CGNs undergoing apoptosis induced by lowering the extracellular potassium concentration from 25 mM to 5 mM. Since insulin-like growth factor-I (IGF-I) is known to protect CGNs from apoptotic cell death, we investigated the effects of IGF-I on MEF2D processing during apoptosis. IGF-I administered during the apoptotic insult did not prevent the hyperphosphorylation of MEF2D and consequential loss of DNA binding. However, IGF-I significantly blocked the degradation of MEF2D. Furthermore, IGF-I had no effect on the initial loss of MEF2 transcriptional activity following hyperphosphorylation, but the recovery of MEF2 activity following restoration of intracellular calcium was significantly increased by IGF-I. We conclude that IGF-I blocks the degradation of MEF2D and enhances recovery of MEF2 activity by protecting MEF2D from caspase-dependent cleavage during apoptosis. These results suggest that IGF-I can prolong the time of commitment to irreversible cell death and enhance the recovery of neurons subjected to an acute apoptotic stimulus by preserving the activity of the pro-survival factor MEF2D.
Key words
Cerebellar granule neurons - Neurodegeneration - Programmed cell death - Caspases - Signal transduction
References
- 1 Stewart C E, Rotwein P. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev. 1996; 76 1005-1026
- 2 D'Mello S R, Borodezt K, Soltoff S P. Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci. 1997; 17 1548-1560
- 3 Lin X, Bulleit R F. Insulin-like growth factor I (IGF-I) is a critical trophic factor for developing cerebellar granule cells. Brain Res Dev Brain Res. 1997; 99 234-242
- 4 Vincent A M, Feldman E L. Control of cell survival by IGF signaling pathways. Growth Horm IGF Res. 2002; 12 193-197
- 5 Dudek H, Datta S R, Franke T F, Birnbaum M J, Yao R, Cooper G M, Segal R A, Kaplan D R, Greenberg M E. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997; 275 661-665
- 6 Neri L M, Borgatti P, Capitani S, Martelli A M. The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta. 2002; 1584 73-80
- 7 Chang F, Lee J T, Navolanic P M, Steelman L S, Shelton J G, Blalock W L, Franklin R A, McCubrey J A. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003; 17 590-603
- 8 Linseman D A, Phelps R A, Bouchard R J, Le S S, Laessig T A, McClure M L, Heidenreich K A. Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci. 2002; 22 9287-9297
- 9 Zhong J, Deng J, Ghetti B, Lee W H. Inhibition of insulin-like growth factor I activity contributes to the premature apoptosis of cerebellar granule neuron in weaver mutant mice: in vitro analysis. J Neurosci Res. 2002; 70 36-45
- 10 Barber A J, Nakamura M, Wolpert E B, Reiter C E, Seigel G M, Antonetti D A, Gardner T W. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem. 2001; 276 32 814-32 821
- 11 Heck S, Lezoualc'h F, Engert S, Behl C. Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB. J Biol Chem. 1999; 274 9828-9835
- 12 Robinson L J, Leitner W, Draznin B, Heidenreich K A. Evidence that p21ras mediates the neurotrophic effects of insulin and insulin-like growth factor I in chick forebrain neurons. Endocrinology. 1994; 135 2568-2573
- 13 Begum N, Robinson L J, Draznin B, Heidenreich K A. Protein phosphatase-1 and -2a activities in cultured fetal chick neurons: differential regulation by insulin and insulin-like growth factor-I. Endocrinology. 1993; 133 2085-2090
- 14 Mohan S, Baylink D J. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms. J Endocrinol. 2002; 175 19-31
- 15 Firth S M, Baxter R C. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002; 23 824-854
- 16 Fizazi K, Yang J, Peleg S, Sikes C R, Kreimann E L, Daliani D, Olive M, Raymond K A, Janus T J, Logothetis C J, Karsenty G, Navone N M. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res. 2003; 9 2587-2597
- 17 Parker A, Cheville J C, Lohse C, Cerhan J R, Blute M L. Expression of insulin-like growth factor I receptor and survival in patients with clear cell renal cell carcinoma. J Urol. 2003; 170 420-424
- 18 Krystal G W, Sulanke G, Litz J. Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol Cancer Ther. 2002; 1 913-922
- 19 Komninou D, Ayonote A, Richie J P Jr, Rigas B. Insulin resistance and its contribution to colon carcinogenesis. Exp Biol Med (Maywood). 2003; 228 396-405
- 20 Marshman E, Streuli C H. Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function. Breast Cancer Res. 2002; 4 231-239
- 21 Singleton J R, Randolph A E, Feldman E L. Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res. 1996; 56 4522-4529
- 22 LeRoith D, Roberts C T Jr. The insulin-like growth factor system and cancer. Cancer Lett. 2003; 195 127-137
- 23 Dore S, Kar S, Quirion R. Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases. Trends Neurosci. 1997; 20 326-331
- 24 Azcoitia I, Doncarlos L L, Garcia-Segura L M. Estrogen and brain vulnerability. Neurotox Res. 2002; 4 235-245
- 25 Trejo J L, Carro E, Nunez A, Torres-Aleman I. Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I. Rev Neurosci. 2002; 13 365-374
- 26 Dik M G, Pluijm S M, Jonker C, Deeg D J, Lomecky M Z, Lips P. Insulin-like growth factor I (IGF-I) and cognitive decline in older persons. Neurobiol Aging. 2003; 24 573-581
- 27 D'Ercole A J, Ye P, O'Kusky J R. Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides. 2002; 36 209-220
- 28 Garofalo R S. Genetic analysis of insulin signaling in Drosophila. . Trends Endocrinol Metab. 2002; 13 156-162
- 29 Linseman D A, McClure M L, Bouchard R J, Laessig T A, Ahmadi F A, Heidenreich K A. Suppression of death receptor signaling in cerebellar Purkinje neurons protects neighboring granule neurons from apoptosis via an insulin-like growth factor I-dependent mechanism. J Biol Chem. 2002; 277 24 546-2453
- 30 Li M, Linseman D A, Allen M P, Meintzer M K, Wang X, Laessig T, Wierman M E, Heidenreich K A. Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J Neurosci. 2001; 21 6544-6552
- 31 Allen M P, Xu M, Linseman D A, Pawlowski J E, Bokoch G M, Heidenreich K A, Wierman M E. Adhesion-related kinase repression of gonadotropin-releasing hormone gene expression requires Rac activation of the extracellular signal-regulated kinase pathway. J Biol Chem. 2002; 277 38 133-38 140
- 32 Linseman D A, Cornejo B J, Le S S, Meintzer M K, Laessig T A, Bouchard R J, Heidenreich K A. A myocyte enhancer factor 2D (MEF2D) kinase activated during neuronal apoptosis is a novel target inhibited by lithium. J Neurochem. 2003; 85 1488-1499
- 33 Black B L, Olson E N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol. 1998; 14 167-196
- 34 Yu Y T, Breitbart R E, Smoot L B, Lee Y, Mahdavi V, Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992; 6 1783-1798
- 35 Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg M E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999; 286 785-790
- 36 McKinsey T A, Zhang C L, Olson E N. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci. 2002; 27 40-47
- 37 Lemercier C, Verdel A, Galloo B, Curtet S, Brocard M P, Khochbin S. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem. 2000; 275 15 594-15 599
- 38 Li M, Wang X, Meintzer M K, Laessig T, Birnbaum M J, Heidenreich K A. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol. 2000; 20 9356-9363
- 39 Amacher S L, Buskin J N, Hauschka S D. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol Cell Biol. 1993; 13 2753-2764
- 40 D'Mello S R, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA. 1993; 90 10 989-10 993
- 41 Mao Z, Wiedmann M. Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J Biol Chem. 1999; 274 31 102-31 107
- 42 Lin X, Bulleit R F. Cell intrinsic mechanisms regulate mouse cerebellar granule neuron differentiation. Neurosci Lett. 1996; 220 81-84
- 43 Furstenberger G, Senn H J. Insulin-like growth factors and cancer. Lancet Oncol. 2002; 3 298-302
- 44 Zhao M, New L, Kravchenko V V, Kato Y, Gram H, di Padova F, Olson E N, Ulevitch R J, Han J. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999; 19 21-30
- 45 Kato Y, Kravchenko V V, Tapping R I, Han J, Ulevitch R J, Lee J D. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. Embo J. 1997; 16 7054-7066
- 46 Han J, Jiang Y, Li Z, Kravchenko V V, Ulevitch R J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997; 386 296-299
- 47 Cox D M, Du M, Marback M, Yang E C, Chan J, Siu K W, McDermott J C. Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A. J Biol Chem. 2003; 278 15 297-15 303
- 48 Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem Biophys Res Commun. 1999; 264 550-555
- 49 Okamoto S, Li Z, Ju C, Scholzke M N, Mathews E, Cui J, Salvesen G S, Bossy-Wetzel E, Lipton S A. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc Natl Acad Sci USA. 2002; 99 3974-3979
- 50 Gaudilliere B, Shi Y, Bonni A. RNA interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival. J Biol Chem. 2002; 277 46 442-46 446
- 51 Linseman D A, Bartley C M, Le S S, Laessig T A, Bouchard R J, Meintzer M K, Li M, Heidenreich K A. Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca2+/calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J Biol Chem. 2003; 278 41 472-41 481
- 52 Shore P, Sharrocks A D. The MADS-box family of transcription factors. Eur J Biochem. 1995; 229 1-13
K. A. Heidenreich, Ph. D.
Denver VAMC-111H · 1055 Clermont Street · Denver, CO, 80220 · USA ·
Phone: +1(303)399-80203891
Fax: +1(303)393-5271
Email: kim.heidenreich@uchsc.edu