Abstract
Cultured rat cerebellar granule neurons (CGNs) require depolarization-mediated calcium influx for survival. Calcium regulates the activity of the pro-survival transcription factor, myocyte enhancer factor 2D (MEF2D). MEF2D is hyperphosphorylated and degraded in CGNs undergoing apoptosis induced by lowering the extracellular potassium concentration from 25 mM to 5 mM. Since insulin-like growth factor-I (IGF-I) is known to protect CGNs from apoptotic cell death, we investigated the effects of IGF-I on MEF2D processing during apoptosis. IGF-I administered during the apoptotic insult did not prevent the hyperphosphorylation of MEF2D and consequential loss of DNA binding. However, IGF-I significantly blocked the degradation of MEF2D. Furthermore, IGF-I had no effect on the initial loss of MEF2 transcriptional activity following hyperphosphorylation, but the recovery of MEF2 activity following restoration of intracellular calcium was significantly increased by IGF-I. We conclude that IGF-I blocks the degradation of MEF2D and enhances recovery of MEF2 activity by protecting MEF2D from caspase-dependent cleavage during apoptosis. These results suggest that IGF-I can prolong the time of commitment to irreversible cell death and enhance the recovery of neurons subjected to an acute apoptotic stimulus by preserving the activity of the pro-survival factor MEF2D.
Key words
Cerebellar granule neurons - Neurodegeneration - Programmed cell death - Caspases - Signal transduction
References
-
1
Stewart C E, Rotwein P.
Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors.
Physiol Rev.
1996;
76
1005-1026
-
2
D'Mello S R, Borodezt K, Soltoff S P.
Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling.
J Neurosci.
1997;
17
1548-1560
-
3
Lin X, Bulleit R F.
Insulin-like growth factor I (IGF-I) is a critical trophic factor for developing cerebellar granule cells.
Brain Res Dev Brain Res.
1997;
99
234-242
-
4
Vincent A M, Feldman E L.
Control of cell survival by IGF signaling pathways.
Growth Horm IGF Res.
2002;
12
193-197
-
5
Dudek H, Datta S R, Franke T F, Birnbaum M J, Yao R, Cooper G M, Segal R A, Kaplan D R, Greenberg M E.
Regulation of neuronal survival by the serine-threonine protein kinase Akt.
Science.
1997;
275
661-665
-
6
Neri L M, Borgatti P, Capitani S, Martelli A M.
The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system.
Biochim Biophys Acta.
2002;
1584
73-80
-
7
Chang F, Lee J T, Navolanic P M, Steelman L S, Shelton J G, Blalock W L, Franklin R A, McCubrey J A.
Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy.
Leukemia.
2003;
17
590-603
-
8
Linseman D A, Phelps R A, Bouchard R J, Le S S, Laessig T A, McClure M L, Heidenreich K A.
Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons.
J Neurosci.
2002;
22
9287-9297
-
9
Zhong J, Deng J, Ghetti B, Lee W H.
Inhibition of insulin-like growth factor I activity contributes to the premature apoptosis of cerebellar granule neuron in weaver mutant mice: in vitro analysis.
J Neurosci Res.
2002;
70
36-45
-
10
Barber A J, Nakamura M, Wolpert E B, Reiter C E, Seigel G M, Antonetti D A, Gardner T W.
Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3.
J Biol Chem.
2001;
276
32 814-32 821
-
11
Heck S, Lezoualc'h F, Engert S, Behl C.
Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB.
J Biol Chem.
1999;
274
9828-9835
-
12
Robinson L J, Leitner W, Draznin B, Heidenreich K A.
Evidence that p21ras mediates the neurotrophic effects of insulin and insulin-like growth factor I in chick forebrain neurons.
Endocrinology.
1994;
135
2568-2573
-
13
Begum N, Robinson L J, Draznin B, Heidenreich K A.
Protein phosphatase-1 and -2a activities in cultured fetal chick neurons: differential regulation by insulin and insulin-like growth factor-I.
Endocrinology.
1993;
133
2085-2090
-
14
Mohan S, Baylink D J.
IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms.
J Endocrinol.
2002;
175
19-31
-
15
Firth S M, Baxter R C.
Cellular actions of the insulin-like growth factor binding proteins.
Endocr Rev.
2002;
23
824-854
-
16
Fizazi K, Yang J, Peleg S, Sikes C R, Kreimann E L, Daliani D, Olive M, Raymond K A, Janus T J, Logothetis C J, Karsenty G, Navone N M.
Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts.
Clin Cancer Res.
2003;
9
2587-2597
-
17
Parker A, Cheville J C, Lohse C, Cerhan J R, Blute M L.
Expression of insulin-like growth factor I receptor and survival in patients with clear cell renal cell carcinoma.
J Urol.
2003;
170
420-424
-
18
Krystal G W, Sulanke G, Litz J.
Inhibition of phosphatidylinositol 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy.
Mol Cancer Ther.
2002;
1
913-922
-
19
Komninou D, Ayonote A, Richie J P Jr, Rigas B.
Insulin resistance and its contribution to colon carcinogenesis.
Exp Biol Med (Maywood).
2003;
228
396-405
-
20
Marshman E, Streuli C H.
Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function.
Breast Cancer Res.
2002;
4
231-239
-
21
Singleton J R, Randolph A E, Feldman E L.
Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis.
Cancer Res.
1996;
56
4522-4529
-
22
LeRoith D, Roberts C T Jr.
The insulin-like growth factor system and cancer.
Cancer Lett.
2003;
195
127-137
-
23
Dore S, Kar S, Quirion R.
Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases.
Trends Neurosci.
1997;
20
326-331
-
24
Azcoitia I, Doncarlos L L, Garcia-Segura L M.
Estrogen and brain vulnerability.
Neurotox Res.
2002;
4
235-245
-
25
Trejo J L, Carro E, Nunez A, Torres-Aleman I.
Sedentary life impairs self-reparative processes in the brain: the role of serum insulin-like growth factor-I.
Rev Neurosci.
2002;
13
365-374
-
26
Dik M G, Pluijm S M, Jonker C, Deeg D J, Lomecky M Z, Lips P.
Insulin-like growth factor I (IGF-I) and cognitive decline in older persons.
Neurobiol Aging.
2003;
24
573-581
-
27
D'Ercole A J, Ye P, O'Kusky J R.
Mutant mouse models of insulin-like growth factor actions in the central nervous system.
Neuropeptides.
2002;
36
209-220
-
28
Garofalo R S.
Genetic analysis of insulin signaling in Drosophila.
.
Trends Endocrinol Metab.
2002;
13
156-162
-
29
Linseman D A, McClure M L, Bouchard R J, Laessig T A, Ahmadi F A, Heidenreich K A.
Suppression of death receptor signaling in cerebellar Purkinje neurons protects neighboring granule neurons from apoptosis via an insulin-like growth factor I-dependent mechanism.
J Biol Chem.
2002;
277
24 546-2453
-
30
Li M, Linseman D A, Allen M P, Meintzer M K, Wang X, Laessig T, Wierman M E, Heidenreich K A.
Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons.
J Neurosci.
2001;
21
6544-6552
-
31
Allen M P, Xu M, Linseman D A, Pawlowski J E, Bokoch G M, Heidenreich K A, Wierman M E.
Adhesion-related kinase repression of gonadotropin-releasing hormone gene expression requires Rac activation of the extracellular signal-regulated kinase pathway.
J Biol Chem.
2002;
277
38 133-38 140
-
32
Linseman D A, Cornejo B J, Le S S, Meintzer M K, Laessig T A, Bouchard R J, Heidenreich K A.
A myocyte enhancer factor 2D (MEF2D) kinase activated during neuronal apoptosis is a novel target inhibited by lithium.
J Neurochem.
2003;
85
1488-1499
-
33
Black B L, Olson E N.
Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins.
Annu Rev Cell Dev Biol.
1998;
14
167-196
-
34
Yu Y T, Breitbart R E, Smoot L B, Lee Y, Mahdavi V, Nadal-Ginard B.
Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors.
Genes Dev.
1992;
6
1783-1798
-
35
Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg M E.
Neuronal activity-dependent cell survival mediated by transcription factor MEF2.
Science.
1999;
286
785-790
-
36
McKinsey T A, Zhang C L, Olson E N.
MEF2: a calcium-dependent regulator of cell division, differentiation and death.
Trends Biochem Sci.
2002;
27
40-47
-
37
Lemercier C, Verdel A, Galloo B, Curtet S, Brocard M P, Khochbin S.
mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity.
J Biol Chem.
2000;
275
15 594-15 599
-
38
Li M, Wang X, Meintzer M K, Laessig T, Birnbaum M J, Heidenreich K A.
Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta.
Mol Cell Biol.
2000;
20
9356-9363
-
39
Amacher S L, Buskin J N, Hauschka S D.
Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle.
Mol Cell Biol.
1993;
13
2753-2764
-
40
D'Mello S R, Galli C, Ciotti T, Calissano P.
Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP.
Proc Natl Acad Sci USA.
1993;
90
10 989-10 993
-
41
Mao Z, Wiedmann M.
Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons.
J Biol Chem.
1999;
274
31 102-31 107
-
42
Lin X, Bulleit R F.
Cell intrinsic mechanisms regulate mouse cerebellar granule neuron differentiation.
Neurosci Lett.
1996;
220
81-84
-
43
Furstenberger G, Senn H J.
Insulin-like growth factors and cancer.
Lancet Oncol.
2002;
3
298-302
-
44
Zhao M, New L, Kravchenko V V, Kato Y, Gram H, di Padova F, Olson E N, Ulevitch R J, Han J.
Regulation of the MEF2 family of transcription factors by p38.
Mol Cell Biol.
1999;
19
21-30
-
45
Kato Y, Kravchenko V V, Tapping R I, Han J, Ulevitch R J, Lee J D.
BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C.
Embo J.
1997;
16
7054-7066
-
46
Han J, Jiang Y, Li Z, Kravchenko V V, Ulevitch R J.
Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation.
Nature.
1997;
386
296-299
-
47
Cox D M, Du M, Marback M, Yang E C, Chan J, Siu K W, McDermott J C.
Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A.
J Biol Chem.
2003;
278
15 297-15 303
-
48
Fujita E, Jinbo A, Matuzaki H, Konishi H, Kikkawa U, Momoi T.
Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9.
Biochem Biophys Res Commun.
1999;
264
550-555
-
49
Okamoto S, Li Z, Ju C, Scholzke M N, Mathews E, Cui J, Salvesen G S, Bossy-Wetzel E, Lipton S A.
Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis.
Proc Natl Acad Sci USA.
2002;
99
3974-3979
-
50
Gaudilliere B, Shi Y, Bonni A.
RNA interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival.
J Biol Chem.
2002;
277
46 442-46 446
-
51
Linseman D A, Bartley C M, Le S S, Laessig T A, Bouchard R J, Meintzer M K, Li M, Heidenreich K A.
Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca2+/calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival.
J Biol Chem.
2003;
278
41 472-41 481
-
52
Shore P, Sharrocks A D.
The MADS-box family of transcription factors.
Eur J Biochem.
1995;
229
1-13
K. A. Heidenreich, Ph. D.
Denver VAMC-111H · 1055 Clermont Street · Denver, CO, 80220 · USA ·
Telefon: +1(303)399-80203891
Fax: +1(303)393-5271
eMail: kim.heidenreich@uchsc.edu