Zusammenfassung
Hörschäden durch Berufs- und Freizeitlärm gehören zu den häufigsten Ursachen einer erworbenen Innenohrschwerhörigkeit. Die vorliegende Arbeit gibt eine Übersicht über die aktuellen Erkenntnisse zur Pathophysiologie der Lärmschädigung des Innenohres unter besonderer Berücksichtigung moderner molekularbiologischer und genetischer Aspekte. Ebenso werden epidemiologische Gesichtspunkte, insbesondere die Bedeutung fehlender Lärmerholungspausen durch zusätzliche Exposition mit Freizeitlärm und die kombinierte Exposition mit Lärm und Chemikalien betrachtet. Ausgehend von den Erkenntnissen zur Epidemiologie und Pathophysiologie werden vor dem Hintergrund der aktuellen wissenschaftlichen Literatur zu tierexperimentellen präklinischen und klinischen Studien die unterschiedlichen Ansatzpunkte der Prävention, Protektion und therapeutischen Intervention bei Schalltrauma diskutiert. Dabei finden sowohl pharmakologische Strategien, wie z. B. mit antioxidativen, antiexzitotoxischen, antiapoptotischen u. a. Substanzen, als auch nichtpharmakologische Strategien wie die Schallkonditionierung Berücksichtigung. Weiterhin werden die systemische und lokale Applikation sowie die Therapie des akuten Schalltraumas und der chronischen Lärmschwerhörigkeit einschließlich moderner Therapieformen für Komorbiditäten wie Tinnitus erläutert.
Schlüsselwörter
Akutes akustisches Trauma - Berufslärm - Freizeitlärm - chronische Lärmschwerhörigkeit - Prävention - Therapie
Literatur
-
1
Kowalska S, Sulkowski W.
Actual and perspective activities of the European Union concerning protection against noise.
Med Pr.
1997;
48(6)
703-712
-
2
Plontke S K, Dietz K, Pfeffer C, Zenner H P.
The incidence of acoustic trauma due to New Year's firecrackers.
Eur Arch Otorhinolaryngol.
2002;
259(5)
247-252
-
3
Fleischer G, Hoffmann E, Muller R, Lang R.
Kinderknallpistolen und ihre Wirkung auf das Gehör.
HNO.
1998;
46(9)
815-820
-
4
Plath P.
Hearing loss caused by leisure activity-induced noise.
HNO.
1994;
42(8)
483-487
-
5
Plath P.
Sozioakusis: Nicht beruflich bedingte Gehörschäden, Teil 2.
HNO.
1998;
46(11)
947-952
-
6
Plath P.
Sozioakusis: Nicht beruflich bedingte Gehörschäden, Teil 1.
HNO.
1998;
46(10)
887-892
-
7
Zenner H P, Struwe V, Schuschke G, Spreng M, Stange G, Plath P, Babisch W, Rebentisch E, Plinkert P, Bachmann K D, Ising H, Lehnert G.
Gehörschäden durch Freizeitlärm.
HNO.
1999;
47(4)
236-248
-
8 Zenner H P. Hören, Physiologie, Biochemie, Zell- und Neurobiologie. Stuttgart, New York; Thieme 1994
-
9
Dieroff H G.
Sozioakusis und Impulslärm.
HNO-Praxis.
1997;
4
494-499
-
10 Dieroff H G. Lärmschwerhörigkeit. 3 ed. Jena, Stuttgart; G.-Fischer-Verlag 1994
-
11
Hawkins J E, Jr.
Comparative otopathology: aging, noise, and ototoxic drugs.
Adv Otorhinolaryngol.
1973;
20
125-141
-
12
Henderson D, Hamernik R P.
Biologic bases of noise-induced hearing loss.
Occup Med.
1995;
10(3)
513-534
-
13 Lehnhardt E, Koch T. Akustisches Trauma. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrg) Oto-Rhino-Laryngologie in Klinik und Praxis. Stuttgart; Thieme Verlag 1994: 757-767
-
14 Pfander F. Das Knalltrauma. Berlin; Springer-Verlag 1975
-
15
Saunders J C, Dear S P, Schneider M E.
The anatomical consequences of acoustic injury: A review and tutorial.
J Acoust Soc Am.
1985;
78(3)
833-860
-
16
Saunders J C, Cohen Y E, Szymko Y M.
The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update.
J Acoust Soc Am.
1991;
90(1)
136-146
-
17 ISO 1999 .Acoustics-Determination of occupational noise exposure and estimation of noise-induced hearing impairment. International Organization for Standardization. Geneva; 1990
-
18 ISO DIS 1999 .Acoustics-Determination of occupational noise exposure and estimation of noise-induced hearing impairment. Geneva; International Organization for Standardization 1985
-
19 Passchier-Vermeer W. Hearing loss due to exposure to steady-state broad band noise. Institut voor Gezondheitstechniek, Sound and Light Division 1968
-
20 VDI 2058 B2V2B2 .Beurteilungspegel von Lärm hinsichtlich Gehörschäden. Verein Deutscher Ingenieure Düsseldorf; 1988
-
21 UVV .Arbeitsmedizinische Vorsorge. VBG 100. Fassung 1997. Köln; Heymanns 1990
-
22 UVV .Lärm. VBG 121. Fassung 1997. Köln; Heymanns 1990
-
23
Barregard L, Axelsson A.
Is there an ototraumatic interaction between noise and solvents?.
Scand Audiol.
1984;
13(3)
151-155
-
24
Bergstrom B, Nystrom B.
Development of hearing loss during long-term exposure to occupational noise. A 20-year follow-up study.
Scand Audiol.
1986;
15(4)
227-234
-
25
Lautermann J, Crann S A, McLaren J, Schacht J.
Glutathione-dependent antioxidant systems in the mammalian inner ear: effects of aging, ototoxic drugs and noise.
Hear Res.
1997;
114(1 - 2)
75-82
-
26
Morata T C.
Chemical exposure as a risk factor for hearing loss.
J Occup Environ Med.
2003;
45(7)
676-682
-
27
Mäkitie A A, Pirvola U, Pyykko I, Sakakibara H, Riihimaki V, Ylikoski J.
The ototoxic interaction of styrene and noise.
Hear Res.
2003;
179(1 - 2)
9-20
-
28
Morata T C, Nylen P, Johnson A C, Dunn D E.
Auditory and vestibular functions after single or combined exposure to toluene: a review.
Arch Toxicol.
1995;
69(7)
431-443
-
29
Morata T C, Johnson A C, Nylen P, Svensson E B, Cheng J, Krieg E F, Lindblad A C, Ernstgard L, Franks J.
Audiometric findings in workers exposed to low levels of styrene and noise.
J Occup Environ Med.
2002;
44(9)
806-814
-
30
Odkvist L M, Larsby B, Tham R, Ahlfeldt H, Andersson B, Eriksson B, Liedgren S R.
Vestibulo-oculomotor disturbances in humans exposed to styrene.
Acta Otolaryngol.
1982;
94(5 - 6)
487-493
-
31
Teixeira C F, Giraldo D a, Morata T C.
Occupational exposure to insecticides and their effects on the auditory system.
Noise Health.
2002;
4(14)
31-39
-
32
Boettcher F A, Henderson D, Gratton M A, Danielson R W, Byrne C D.
Synergistic interactions of noise and other ototraumatic agents.
Ear Hear.
1987;
8(4)
192-212
-
33
Johnson A C, Nylen P R.
Effects of industrial solvents on hearing.
Occup Med.
1995;
10(3)
623-640
-
34
Fechter L D.
Effects of acute styrene and simultaneous noise exposure on auditory function in the guinea pig.
Neurotoxicol Teratol.
1993;
15(3)
151-155
-
35 Morata T C, Campo P. Auditory function after single or combined exposure to styrene: a review. In: Henderson D, Prasher D, Kopke R., Hamernik RP, (eds) Noise induced hearing loss: basic mechanisms, prevention and control. London; NRN publications 2001: 293-302
-
36
Loquet G, Campo P, Lataye R, Cossec B, Bonnet P.
Combined effects of exposure to styrene and ethanol on the auditory function in the rat.
Hear Res.
2000;
148(1 - 2)
173-180
-
37
Prasher D, Morata T, Campo P, Fechter L, Johnson A C, Lund S P, Pawlas K, Starck J, Sliwinska-Kowalska M, Sulkowski W.
NoiseChem: A European Commission research project on the effects of exposure to noise and industrial chemicals on hearing and balance.
Noise Health.
2002;
4(14)
41-48
-
38
Zenner H P.
Freizeitlärm-Gehörschäden bei jedem zehnten Jugendlichen zu befürchten.
HNO.
1999;
47(4)
225
-
39
Babisch W, Ising H, Gallacher J E.
Health status as a potential effect modifier of the relation between noise annoyance and incidence of ischaemic heart disease.
Occup Environ Med.
2003;
60(10)
739-745
-
40 Borchgrevink H M. One third of 18 year old male conscripts show noise induced hearing loss >20 dB before start of military service. The incidence being doubled since 1981. Reflecting increased leisure noise?. In: Berglund B, Berglund U, Karlsson J, Lindvall T (eds) Proceedings of the 5th International Congress On Noise As A Public Health Problem, Stockholm. Stockholm; Council of Building Research 1988: 27-32
-
41 Borchgrevink H M. Music-induced hearing loss >20 dB affects 30 % of Norwegian 18 year old males befor military service - The incidence doubled in the 80's, declining in the 90's. Noise and Man '93, Proceedings of the 5th International Congress On Noise As A Public Health Problem. Nice; 1993 2: 25-28
-
42
Ising H, Babisch W, Gandert J, Scheuermann B.
Hörschäden bei jugendlichen Berufsanfängern aufgrund von Freizeitlärm und Musik.
Z Lärmbekämpfung.
1988;
35
35-41
-
43 Korpert K. Hearing thresholds of young workers measured in the period from 1976 to 1991. Swiss Acoust Soc 1992: 181-184
-
44
Hellstrom P A, Axelsson A.
Sound levels habits and hazards of using portable cassette players.
J Sound Vibration.
1988;
127
521-528
-
45
Ising H, Babisch W, Kruppa B.
Loud music and hearing risk.
Audiol Med.
1997;
6
123-133
-
46
Ising H, Hanel J, Pilgramm M, Babisch W, Lindthammer A.
Gehörschadensrisiko durch Musikhören mit Kopfhörern.
HNO.
1994;
42(12)
764-768
-
47
Rice C G, Rossi G, Olina M.
Damage risk criteria from personal cassette players.
Br J Audiol.
1987;
21
279-288
-
48
Richter U.
Wird eine Zulassungsprüfung von Mini-Kassettengeräten („Walkman®”) notwendig?.
Strahlensch Aktuel.
1990;
6
25-26
-
49 Struwe F, Jansen G, Schwarze S, Schwenzer C, Nitzsche M. Untersuchung von Hörgewohnheiten und möglichen Gehörrisiken durch Schalleinwirkungen in der Freizeit unter besonderer Berücksichtigung des Walkman®-Hörens. In: Babisch W, Bambach G, Ising H, Kruppa B, Plath P, Rebentisch E et al. (Hrsg) Gehörgefährdung durch laute Musik und Freizeitlärm. Berlin; WaBoLu Hefte 5. Umweltbundesamt 1996: 144-154
-
50 Hoffmann E. Hörfähigkeit und Hörschäden junger Erwachsener unter Berücksichtigung der Lärmbelastung. Heidelberg; Median-Verlag 1997
-
51 Struwe F, Jansen G, Schwarze S, Schwenzer C, Nitzsche M, Notbohm G. Hearing loss induced by leisure noise: subjective evaluation and audiometric assessment. In: Newman M (ed) Proceedings of the 15th International Congress on Acoustics Trondheim. 1995: 303-305
-
52
Rudloff F, Specht von H, Penk J, Schuschke G.
Untersuchungen zu Ausmaß und möglichen Folgen jugendlichen Musikkonsums. Teil 3: Ergebnisse von Schallpegelmessungen und audiologischen Untersuchungen.
Z Lärmbekämpfung.
1996;
43
9-14
-
53 Davis A C, Fortnum H M, Coles R A, Haggard M P, Lutman M E. Damage to hearing arising from leisure noise: a review of the literature. Report prepared for the Health and Saftey Executive by the MRC Institute of Hearing Research. Nottingham. London; Her Majaesty's Stationary Office 1985
-
54
Babisch W, Ising H.
Musikhörgewohnheiten bei Jugendlichen.
Z Lärmbekämpfung.
1994;
41
91-97
-
55
Ising H, Babisch W, Hanel J, Kruppa B, Pilgramm M.
Empirische Untersuchungen zu Musikhörgewohnheiten von Jugendlichen.
HNO.
1995;
43(4)
244-249
-
56 Bickerdike J, Gregory A. An evaluation of hearing damage risk to attenders at discotheques. Report. Leeds Polytechnical School of Constructional Studies Dept Environment 1980
-
57
Smoorenburg G F.
Risk of noise-induced hearing loss following exposure to Chinese firecrackers.
Audiology.
1993;
32(6)
333-343
-
58
Maglieri D J, Henderson H R.
Noise from aerial bursts of fireworks.
J Acoust Soc Am.
1973;
54(5)
1224-1227
-
59
Just T, Pau H W, Kaduk W, Hingst V.
Schalldruckpegelmessungen und Impulsdauerbestimmungen handelsüblicher Schreckschusswaffen.
HNO.
2000;
48(12)
943-948
-
60
Rothschild M A, Dieker L, Prante H, Maschke C.
Schalldruckspitzenpegel von Schüssen aus Schreckschusswaffen.
HNO.
1998;
46(12)
986-992
-
61
Byl F M, Jr.
Sudden hearing loss: eight years' experience and suggested prognostic table.
Laryngoscope.
1984;
94(5 Pt 1)
647-661
-
62
Plontke S, Herrmann C, Zenner H P.
Gehörschäden durch Silvester-Feuerwerkskörper in der Bundesrepublik Deutschland zur Jahreswende 1998/99.
HNO.
1999;
47(12)
1017-1019
-
63
Fleischer G, Mueller R, Bache T, Heppelmann G.
Auditory effects of some millennium celebrations in Germany.
Zeitschrift für Audiologie, Audiological Acoustics.
2003;
42
106-116
-
64
Beyer P, Schubert M, Plontke S, Zenner H P.
Zivil- und strafrechtliche Aspekte von Gehörschäden durch Silvesterfeuerwerkskörper.
Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitschutz.
2003;
46
59-62
-
65
Pfeffer C, Dietz K, Zenner H P, Plontke S.
Acoustic trauma due to New Year's firecrackers - long-term results of an epidemiologic study. Abs. DGHNO 2003.
Eur Arch Otorhinolaryngol.
2002;
259
481
-
66
Plontke S, Scheiderbauer H, Vonthein R, Plinkert P K, Lowenheim H, Zenner H P.
Erholung der Hörschwelle nach Knalltrauma durch Feuerwerkskörper und Signalpistolen.
HNO.
2003;
51(3)
245-250
-
67
Mrena R, Savolainen S, Kuokkanen J T, Ylikoski J.
Characteristics of tinnitus induced by acute acoustic trauma: a long-term follow-up.
Audiol Neurootol.
2002;
7(2)
122-130
-
68
Gupta D, Vishwakarma S K.
Toy weapons and firecrackers: a source of hearing loss.
Laryngoscope.
1989;
99(3)
330-334
-
69
Stockwell C W, Ades H W, Engstrom H.
Patterns of hair cell damage after intense auditory stimulation.
Ann Otol Rhinol Laryngol.
1969;
78
1144-1168
-
70
Beck C.
Kernveränderungen der Haarzellen nach Beschallung.
Arch Ohr Nas Kehlk Heilk.
1955;
167
262-267
-
71
Beck C, Michler H.
Feinstrukturelle und histochemische Veränderungen an den Strukturen der Cochlea beim Meerschweinchen nach dosierter Reintonbeschallung.
Arch Ohr Nas Kehlk Heilk.
190;
174
496-499
-
72
Spoendlin H.
Ultrastructural features of the organ of Corti in normal and acoustically stimulated animals.
Ann Otol Rhinol Laryngol.
1962;
71
657-677
-
73
Spoendlin H.
Primary structural changes in the organ of Corti after acoustic overstimulation.
Acta Otolaryngol.
1971;
71(2)
166-176
-
74
Brownell W E, Bader C R, Bertrand D, de Ribaupierre Y.
Evoked mechanical responses of isolated cochlear outer hair cells.
Science.
1985;
227(4683)
194-196
-
75
Zenner H P, Zimmermann U, Schmitt U.
Reversible contraction of isolated mammalian cochlear hair cells.
Hear Res.
1985;
18(2)
127-133
-
76
Zenner H P.
Motile responses in outer hair cells.
Hear Res.
1986;
22
83-90
-
77
Zenner H P, Zimmermann U, Gitter A H.
Fast motility of isolated mammalian auditory sensory cells.
Biochem Biophys Res Commun.
1987;
149(1)
304-308
-
78
Zheng J, Shen W, He D Z, Long K B, Madison L D, Dallos P.
Prestin is the motor protein of cochlear outer hair cells.
Nature.
2000;
405(6783)
149-155
-
79
Preyer S, Gummer A W.
Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment.
Audiol Neurootol.
1996;
1(1)
3-11
-
80
Lehnhardt E.
Klinik der Innenohrschwerhörigkeiten.
Arch Otorhinolaryngol.
1984;
Suppl. 1
58-218
-
81
Le Page E L, Johnstone B M.
Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea.
Hear Res.
1980;
2(3 - 4)
183-189
-
82
Geisler C D.
The responses of models of „high-spontaneous” auditory-nerve fibers in a damaged cochlea to speech syllables in noise.
J Acoust Soc Am.
1989;
86(6)
2192-2205
-
83
Leysieffer H, Baumann J W, Muller G, Zenner H P.
Ein implantierbarer piezoelektrischer Hörgerätewandler für Innenohrschwerhörige, Teil II: Klinisches Implantat.
HNO.
1997;
45(10)
801-815
-
84
Roberto M, Hamernik R P, Turrentine G A.
Damage of the auditory system associated with acute blast trauma.
Ann Otol Rhinol Laryngol Suppl.
1989;
140
23-34
-
85
Wang Y, Hirose K, Liberman M C.
Dynamics of noise-induced cellular injury and repair in the mouse cochlea.
J Assoc Res Otolaryngol.
2002;
3(3)
248-268
-
86
Nordmann A S, Bohne B A, Harding G W.
Histopathological differences between temporary and permanent threshold shift.
Hear Res.
2000;
139(1 - 2)
13-30
-
87
Tilney L G, Saunders J C, Egelman E, DeRosier D J.
Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae.
Hear Res.
1982;
7(2)
181-197
-
88
Liberman M C, Dodds L W.
Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates.
Hear Res.
1984;
16(1)
43-53
-
89
Choi D W.
Excitotoxic cell death.
J Neurobiol.
1992;
23(9)
1261-1276
-
90
Gutteridge J M, Halliwell B.
Free radicals and antioxidants in the year 2000. A historical look to the future.
Ann N Y Acad Sci.
2000;
899
136-147
-
91
Mattson M P.
Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders.
Neuromolecular Med.
2003;
3(2)
65-94
-
92
Kopke R, Allen K A, Henderson D, Hoffer M, Frenz D, van de WT .
A radical demise. Toxins and trauma share common pathways in hair cell death.
Ann N Y Acad Sci.
1999;
884
171-191
-
93
Duncan R K, Saunders J C.
Stereocilium injury mediates hair bundle stiffness loss and recovery following intense water-jet stimulation.
J Comp Physiol [A].
2000;
186(11)
1095-1106
-
94
Saunders J C, Schneider M E, Dear S P.
The structure and function of actin in hair cells.
J Acoust Soc Am.
1985;
78(1 Pt 2)
299-311
-
95
Adler H J, Kenealy J F, DeDio R M, Saunders J C.
Threshold shift, hair cell loss, and hair bundle stiffness following exposure to 120 and 125 dB pure tones in the neonatal chick.
Acta Otolaryngol.
1992;
112(3)
444-454
-
96
Hu B H, Henderson D, Nicotera T M.
F-actin cleavage in apoptotic outer hair cells in chinchilla cochleas exposed to intense noise.
Hear Res.
2002;
172(1 - 2)
1-9
-
97
Schneider M E, Belyantseva I A, Azevedo R B, Kachar B.
Rapid renewal of auditory hair bundles.
Nature.
2002;
418(6900)
837-838
-
98
Evans P, Halliwell B.
Free radicals and hearing. Cause, consequence, and criteria.
Ann N Y Acad Sci.
1999;
884
19-40
-
99 Miller J M, Schacht J, Altschuler R. Prevention of noise-induced hearing loss. In: Henderson D, Prasher D, Kopke R., Hamernik RP (eds) Noise Induced Hearing Loss: Basic Mechanisms, Prevention and Control. London; NRN publications 2001: 215-230
-
100
Ohlemiller K K, Wright J S, Dugan L L.
Early elevation of cochlear reactive oxygen species following noise exposure.
Audiol Neurootol.
1999;
4(5)
229-236
-
101
Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima A.
Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma.
Eur Arch Otorhinolaryngol.
1995;
252(8)
504-508
-
102
Yamasoba T, Harris C, Shoji F, Lee R J, Nuttall A L, Miller J M.
Influence of intense sound exposure on glutathione synthesis in the cochlea.
Brain Res.
1998;
804(1)
72-78
-
103
Pourbakht A, Yamasoba T.
Ebselen attenuates cochlear damage caused by acoustic trauma.
Hear Res.
2003;
181(1 - 2)
100-108
-
104
Hight N G, McFadden S L, Henderson D, Burkard R F, Nicotera T.
Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA.
Hear Res.
2003;
179(1 - 2)
21-32
-
105
Hu B H, Zheng X Y, McFadden S L, Kopke R D, Henderson D.
R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla.
Hear Res.
1997;
113(1 - 2)
198-206
-
106
Kopke R D, Weisskopf P A, Boone J L, Jackson R L, Wester D C, Hoffer M E, Lambert D C, Charon C C, Ding D L, McBride D.
Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla.
Hear Res.
2000;
149(1 - 2)
138-146
-
107
Kopke R D, Coleman J K, Liu J, Campbell K C, Riffenburgh R H.
Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
Laryngoscope.
2002;
112(9)
1515-1532
-
108
Yamasoba T, Nuttall A L, Harris C, Raphael Y, Miller J M.
Role of glutathione in protection against noise-induced hearing loss.
Brain Res.
1998;
784(1 - 2)
82-90
-
109
Yamasoba T, Schacht J, Shoji F, Miller J M.
Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo.
Brain Res.
1999;
815(2)
317-325
-
110
Ohlemiller K K, McFadden S L, Ding D L, Flood D G, Reaume A G, Hoffman E K, Scott R W, Wright J S, Putcha G V, Salvi R J.
Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss.
Audiol Neurootol.
1999;
4(5)
237-246
-
111
Ohlemiller K K, McFadden S L, Ding D L, Lear P M, Ho Y S.
Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice.
J Assoc Res Otolaryngol.
2000;
1(3)
243-254
-
112
Halliwell B, Gutteridge J M.
Role of free radicals and catalytic metal ions in human disease: an overview.
Methods Enzymol.
1990;
186
1-85
-
113
Fessenden J D, Schacht J.
The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology.
Hear Res.
1998;
118(1 - 2)
168-176
-
114
Popa R, Anniko M, Takumida M, Arnold W.
Localization of nitric oxide synthase isoforms in the human cochlea.
Acta Otolaryngol.
2001;
121(4)
454-459
-
115
Shi X, Ren T, Nuttall A L.
The electrochemical and fluorescence detection of nitric oxide in the cochlea and its increase following loud sound.
Hear Res.
2002;
164(1 - 2)
49-58
-
116
Sies H, Sharov V S, Klotz L O, Briviba K.
Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase.
J Biol Chem.
1997;
272(44)
27 812-27 817
-
117
Ehrenberger K, Felix D.
Receptor pharmacological models for inner ear therapies with emphasis on glutamate receptors: a survey.
Acta Otolaryngol.
1995;
115(2)
236-240
-
118
Puel J L, Ruel J, Gervais D C, Pujol R.
Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss.
Neuroreport.
1998;
9(9)
2109-2114
-
119
Ehrenberger K, Felix D.
Glutamate receptors in afferent cochlear neurotransmission in guinea pigs.
Hear Res.
1991;
52(1)
73-80
-
120
Eybalin M.
Neurotransmitters and neuromodulators of the mammalian cochlea.
Physiol Rev.
1993;
73(2)
309-373
-
121
Ruel J, Chen C, Pujol R, Bobbin R P, Puel J L.
AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig.
J Physiol.
1999;
518 ( Pt 3)
667-680
-
122
Ruel J, Bobbin R P, Vidal D, Pujol R, Puel J L.
The selective AMPA receptor antagonist GYKI 53 784 blocks action potential generation and excitotoxicity in the guinea pig cochlea.
Neuropharmacology.
2000;
39(11)
1959-1973
-
123
Spoendlin H.
The innervation of the organ of Corti.
J Laryngol Otol.
1967;
81(7)
717-738
-
124
Spoendlin H.
Anatomy of cochlear innervation.
Am J Otolaryngol.
1985;
6(6)
453-467
-
125
Puel J L.
Chemical synaptic transmission in the cochlea.
Prog Neurobiol.
1995;
47(6)
449-476
-
126
Oestreicher E, Arnold W, Ehrenberger K, Felix D.
New approaches for inner ear therapy with glutamate antagonists.
Acta Otolaryngol.
1999;
119(2)
174-178
-
127
Matsubara A, Laake J H, Davanger S, Usami S, Ottersen O P.
Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti.
J Neurosci.
1996;
16(14)
4457-4467
-
128
Niedzielski A S, Safieddine S, Wenthold R J.
Molecular analysis of excitatory amino acid receptor expression in the cochlea.
Audiol Neurootol.
1997;
2(1 - 2)
79-91
-
129
Ryan A F, Brumm D, Kraft M.
Occurrence and distribution of non-NMDA glutamate receptor mRNAs in the cochlea.
Neuroreport.
1991;
2(11)
643-646
-
130
Safieddine S, Eybalin M.
Triple immunofluorescence evidence for the coexistence of acetylcholine, enkephalins and calcitonin gene-related peptide within efferent (olivocochlear) neurons of rats and guinea-pigs.
Eur J Neurosci.
1992;
4(10)
981-992
-
131
Usami S, Matsubara A, Fujita S, Shinkawa H, Hayashi M.
NMDA (NMDAR1) and AMPA-type (GluR2/3) receptor subunits are expressed in the inner ear.
Neuroreport.
1995;
6(8)
1161-1164
-
132
Choi D W.
Excitotoxic cell death.
J Neurobiol.
1992;
23(9)
1261-1276
-
133
Puel J L, Ruel J, Gervais D C, Pujol R.
Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss.
Neuroreport.
1998;
9(9)
2109-2114
-
134 Dudel J. Erregungsübertragung von Zelle zu Zelle. In: Schmidt RF, Tews G (Hrsg) Physiologie des Menschen. Heidelberg; Springer-Verlag 1997: 43-66
-
135
Choi D W, Rothman S M.
The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.
Annu Rev Neurosci.
1990;
13
171-182
-
136
Hu B H, Guo W, Wang P Y, Henderson D, Jiang S C.
Intense noise-induced apoptosis in hair cells of guinea pig cochleae.
Acta Otolaryngol.
2000;
120(1)
19-24
-
137
Nicotera T M, Hu B H, Henderson D.
The caspase pathway in noise-induced apoptosis of the chinchilla cochlea.
J Assoc Res Otolaryngol.
2003;
4(4)
466-477
-
138
Majno G, Joris I.
Apoptosis, oncosis, and necrosis. An overview of cell death.
Am J Pathol.
1995;
146(1)
3-15
-
139
Reed J C.
Mechanisms of apoptosis.
Am J Pathol.
2000;
157(5)
1415-1430
-
140
Ashe P C, Berry M D.
Apoptotic signaling cascades.
Prog Neuropsychopharmacol Biol Psychiatry.
2003;
27(2)
199-214
-
141
Chen M, Wang J.
Initiator caspases in apoptosis signaling pathways.
Apoptosis.
2002;
7(4)
313-319
-
142
Cande C, Cecconi F, Dessen P, Kroemer G.
Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death?.
J Cell Sci.
2002;
115(Pt 24)
4727-4734
-
143
Hu B H, Henderson D, Nicotera T M.
Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise.
Hear Res.
2002;
166(1 - 2)
62-71
-
144
Davis R J.
Signal transduction by the JNK group of MAP kinases.
Cell.
2000;
103(2)
239-252
-
145
Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto A M, Walton K M, Ylikoski J.
Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation.
J Neurosci.
2000;
20(1)
43-50
-
146
Cody A R, Robertson D.
Variability of noise-induced damage in the guinea pig cochlea: electrophysiological and morphological correlates after strictly controlled exposures.
Hear Res.
1983;
9(1)
55-70
-
147
Henderson D, Subramaniam M, Boettcher F A.
Individual susceptibility to noise-induced hearing loss: an old topic revisited.
Ear Hear.
1993;
14(3)
152-168
-
148
Ward W D.
The concept of susceptibility to hearing loss.
J Occup Med.
1965;
7(12)
595-607
-
149
Chon K M, Roh H J, Goh E K, Wang S G.
Noise induced hearing loss and the individual susceptibility to the noise.
Int Tinnitus J.
1996;
2
73-82
-
150
Jerger J, Carhart R.
Temporary threshold shift as an index of noise susceptibility.
J Acoust Soc Am.
1956;
28
611-613
-
151
Plinkert P K, Hemmert W, Wagner W, Just K, Zenner H P.
Monitoring noise susceptibility: sensitivity of otoacoustic emissions and subjective audiometry.
Br J Audiol.
1999;
33(6)
367-382
-
152
Puel J L, Rebillard G.
Effect of contralateral sound stimulation on the distortion product 2F1-F2: evidence that the medial efferent system is involved.
J Acoust Soc Am.
1990;
87(4)
1630-1635
-
153
Guinan J J, Backus B C, Lilaonitkul W, Aharonson V.
Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs.
J Assoc Res Otolaryngol.
2003;
4(4)
521-540
-
154
Maison S F, Liberman M C.
Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength.
J Neurosci.
2000;
20(12)
4701-4707
-
155
Venter J C, Adams M D, Myers E W. et al .
The sequence of the human genome.
Science.
2001;
291(5507)
1304-1351
-
156
Haack B, Pfister M, Blin N, Kupka S.
Genes involved in hearing impairment.
Curr Genomics.
2003;
4
379-415
-
157
Davis R R, Cheever M L, Krieg E F, Erway L C.
Quantitative measure of genetic differences in susceptibility to noise-induced hearing loss in two strains of mice.
Hear Res.
1999;
134(1 - 2)
9-15
-
158
Davis R R, Newlander J K, Ling X, Cortopassi G A, Krieg E F, Erway L C.
Genetic basis for susceptibility to noise-induced hearing loss in mice.
Hear Res.
2001;
155(1 - 2)
82-90
-
159
Erway L C, Shiau Y W, Davis R R, Krieg E F.
Genetics of age-related hearing loss in mice. III. Susceptibility of inbred and F1 hybrid strains to noise-induced hearing loss.
Hear Res.
1996;
93(1 - 2)
181-187
-
160
Yoshida N, Hequembourg S J, Atencio C A, Rosowski J J, Liberman M C.
Acoustic injury in mice: 129/SvEv is exceptionally resistant to noise-induced hearing loss.
Hear Res.
2000;
141(1 - 2)
97-106
-
161
Davis R R, Kozel P, Erway L C.
Genetic influences in individual susceptibility to noise: a review.
Noise Health.
2003;
5(20)
19-28
-
162
Moller A R.
Auditory neurophysiology.
J Clin Neurophysiol.
1994;
11(3)
284-308
-
163
Zakrisson J E, Borg E.
Stapedius reflex and auditory fatigue.
Audiology.
1974;
13(3)
231-235
-
164
Warr W B, Guinan J J, Jr.
Efferent innervation of the organ of corti: two separate systems.
Brain Res.
1979;
173(1)
152-155
-
165
Warr W B, Boche J B, Neely S T.
Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems.
Hear Res.
1997;
108(1 - 2)
89-111
-
166
Oestreicher E, Arnold W, Ehrenberger K, Felix D.
Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs.
Hear Res.
1997;
107(1 - 2)
46-52
-
167
Ruel J, Nouvian R, Gervais d C, Pujol R, Eybalin M, Puel J L.
Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea.
Eur J Neurosci.
2001;
14(6)
977-986
-
168
Fuchs P A.
The synaptic physiology of cochlear hair cells.
Audiol Neurootol.
2002;
7
40-44
-
169
Plinkert P K, Gitter A H, Mohler H, Zenner H P.
Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells.
Eur Arch Otorhinolaryngol.
1993;
250(6)
351-357
-
170
Plinkert P K, Zenner H P, Heilbronn E.
A nicotinic acetylcholine receptor-like alpha-bungarotoxin-binding site on outer hair cells.
Hear Res.
1991;
53(1)
123-130
-
171
Elgoyhen A B, Johnson D S, Boulter J, Vetter D E, Heinemann S.
Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells.
Cell.
1994;
79(4)
705-715
-
172
Dallos P, He D Z, Lin X, Sziklai I, Mehta S, Evans B N.
Acetylcholine, outer hair cell electromotility, and the cochlear amplifier.
J Neurosci.
1997;
17(6)
2212-2226
-
173
Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg J P, Fakler B.
Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells.
Neuron.
2000;
26(3)
595-601
-
174
Pfaltz R.
Einfluss schallgereizter efferenter Hörbahnanteile auf den de-afferentierten Nucleus cochlearis (Meerschweinchen).
Pflügers Arch ges Physiol.
1962;
274
533-552
-
175
Pfaltz R.
Nachweis der akustischen Efferenzen und ihre Wirkung auf die schallaufnehmende Peripherie (Nucleus cochlearis, cochlea).
Arch Ohr Nas Kehlk Heilk.
1962;
180
730
-
176
Cody A R, Johnstone B M.
Temporary threshold shift modified by binaural acoustic stimulation.
Hear Res.
1982;
6(2)
199-205
-
177
Maffi C L, Aitkin L M.
Differential neural projections to regions of the inferior colliculus of the cat responsive to high frequency sounds.
Hear Res.
1987;
26(2)
211-219
-
178
Pfaltz R, Pirsig W, Sadanaga M.
Postsynaptische, auditorische, gekreuzte, efferente Hemmung im Nucleus ventralis und ihre Blockade durch Strychninnitrat (Meerschweinchen).
Arch klin exp Ohr Nas Kehlk Heilk.
1968;
190
60
-
179
Rajan R, Johnstone B M.
Residual effects in monaural temporary threshold shifts to pure tones.
Hear Res.
1983;
12(2)
185-197
-
180
Vosteen K H.
Zur pathologischen Anatomie efferenter Nervenfasern in der Schnecke.
Arch Ohr Nas u Kehlk Heilk.
1968;
181
268-278
-
181
Ryan A F, Keithley E M, Wang Z X, Schwartz I R.
Collaterals from lateral and medial olivocochlear efferent neurons innervate different regions of the cochlear nucleus and adjacent brainstem.
J Comp Neurol.
1990;
300(4)
572-582
-
182
Liberman M C.
The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury.
J Neurophysiol.
1991;
65(1)
123-132
-
183
el Barbary A, Altschuler R A, Schacht J.
Glutathione S-transferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization.
Hear Res.
1993;
71(1 - 2)
80-90
-
184
Nam Y J, Stover T, Hartman S S, Altschuler R A.
Upregulation of glial cell line-derived neurotrophic factor (GDNF) in the rat cochlea following noise.
Hear Res.
2000;
146(1 - 2)
1-6
-
185
Bibel M, Barde Y A.
Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system.
Genes Dev.
2000;
14(23)
2919-2937
-
186
Keithley E M, Ma C L, Ryan A F, Louis J C, Magal E.
GDNF protects the cochlea against noise damage.
Neuroreport.
1998;
9(10)
2183-2187
-
187
Fritzsch B, Pirvola U, Ylikoski J.
Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications.
Cell Tissue Res.
1999;
295(3)
369-382
-
188
Staecker H, Kopke R, Malgrange B, Lefebvre P, van de Water T R.
NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells.
Neuroreport.
1996;
7(4)
889-894
-
189
Oestreicher E, Knipper M, Arnold A, Zenner H P, Felix D.
Neurotrophin 3 potentiates glutamatergic responses of IHC afferents in the cochlea in vivo.
Eur J Neurosci.
2000;
12(5)
1584-1590
-
190
Schimmang T, Tan J, Muller M, Zimmermann U, Rohbock K, Kopschall I, Limberger A, Minichiello L, Knipper M.
Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss.
Development.
2003;
130(19)
4741-4750
-
191
Pickles J O, Chir B.
Roles of fibroblast growth factors in the inner ear.
Audiol Neurootol.
2002;
7(1)
36-39
-
192
Zine A, de Ribaupierre F.
Tissue-specific levels and cellular distribution of epidermal growth factor receptors within control and neomycin-damaged neonatal rat organ of corti.
J Neurobiol.
1999;
38(3)
313-322
-
193
Michel O, Hess A, Bloch W, Schmidt A, Stennert E, Addicks K.
Immunohistochemical detection of vascular endothelial growth factor (VEGF) and VEGF receptors Flt-1 and KDR/Flk-1 in the cochlea of guinea pigs.
Hear Res.
2001;
155(1 - 2)
175-180
-
194
Parsell D A, Lindquist S.
The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.
Annu Rev Genet.
1993;
27
437-496
-
195
Neely J G, Thompson A M, Gower D J.
Detection and localization of heat shock protein 70 in the normal guinea pig cochlea.
Hear Res.
1991;
52(2)
403-406
-
196
Dechesne C J, Kim H N, Nowak T S Jr, Wenthold R J.
Expression of heat shock protein, HSP72, in the guinea pig and rat cochlea after hyperthermia: immunochemical and in situ hybridization analysis.
Hear Res.
1992;
59(2)
195-204
-
197
Yoshida N, Kristiansen A, Liberman M C.
Heat stress and protection from permanent acoustic injury in mice.
J Neurosci.
1999;
19(22)
10 116-10 124
-
198
Plontke S K, Lifshitz J, Saunders J C.
Distribution of rate-intensity function types in chick cochlear nerve after exposure to intense sound.
Brain Res.
1999;
842(1)
262-274
-
199
Lim H H, Jenkins O H, Myers M W, Miller J M, Altschuler R A.
Detection of HSP 72 synthesis after acoustic overstimulation in rat cochlea.
Hear Res.
1993;
69(1 - 2)
146-150
-
200
Niu X, Shao R, Canlon B.
Suppression of apoptosis occurs in the cochlea by sound conditioning.
Neuroreport.
2003;
14(7)
1025-1029
-
201
Lomax M I, Gong T W, Cho Y, Huang L, Oh S H, Adler H J, Raphael Y, Altschuler R A.
Differential gene expression following noise trauma in birds and mammals.
Noise Health.
2001;
3(11)
19-35
-
202
O'Donovan K J, Tourtellotte W G, Millbrandt J, Baraban J M.
The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience.
Trends Neurosci.
1999;
22(4)
167-173
-
203
Taggart R T, McFadden S L, Ding D L, Henderson D, Jin X, Sun W, Salvi R.
Gene expression changes in chinchilla cochlea from noise-induced temporary threshold shift.
Noise Health.
2001;
3(11)
1-18
-
204
Jacono A A, Hu B, Kopke R D, Henderson D, van de Water T R, Steinman H M.
Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla.
Hear Res.
1998;
117(1 - 2)
31-38
-
205
Sobkowicz H M, August B K, Slapnick S M.
Epithelial repair following mechanical injury of the developing organ of Corti in culture: an electron microscopic and autoradiographic study.
Exp Neurol.
1992;
115(1)
44-49
-
206
Puel J L, Saffiedine S, Gervais D C, Eybalin M, Pujol R.
Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea.
C R Acad Sci III.
1995;
318(1)
67-75
-
207
d'Aldin C G, Ruel J, Assie R, Pujol R, Puel J L.
Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea.
Int J Dev Neurosci.
1997;
15(4 - 5)
619-629
-
208
Puel J L, Ruel J, Guitton M, Wang J, Pujol R.
The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies.
Audiol Neurootol.
2002;
7(1)
49-54
-
209
Lowenheim H, Furness D N, Kil J, Zinn C, Gultig K, Fero M L, Frost D, Gummer A W, Roberts J M, Rubel E W, Hackney C M, Zenner H P.
Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti.
Proc Natl Acad Sci U S A.
1999;
96(7)
4084-4088
-
210
Lowenheim H.
Grundlagen der in vivo Regeneration im Kopf-Halsbereich.
Laryngorhinootologie.
2002;
Suppl 1
1-23
-
211
Corwin J T, Cotanche D A.
Regeneration of sensory hair cells after acoustic trauma.
Science.
1988;
240(4860)
1772-1774
-
212
Cotanche D A.
Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma.
Hear Res.
1987;
30(2 - 3)
181-195
-
213
Cotanche D A.
Structural recovery from sound and aminoglycoside damage in the avian cochlea.
Audiol Neurootol.
1999;
4(6)
271-285
-
214
Ryals B M, Rubel E W.
Hair cell regeneration after acoustic trauma in adult Coturnix quail.
Science.
1988;
240(4860)
1774-1776
-
215
Saunders J C, Doan D E, Poje C P, Fisher K A.
Cochlear nerve activity after intense sound exposure in neonatal chicks.
J Neurophysiol.
1996;
76(2)
770-787
-
216
Smolders J W.
Functional recovery in the avian ear after hair cell regeneration.
Audiol Neurootol.
1999;
4(6)
286-302
-
217
Reng D, Muller M, Smolders J W.
Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear.
Audiol Neurootol.
2001;
6(2)
66-78
-
218
Liang P, Pardee A B.
Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.
Science.
1992;
257(5072)
967-971
-
219
Liang P, Pardee A B.
Differential display. A general protocol.
Mol Biotechnol.
1998;
10(3)
261-267
-
220
Diatchenko L, Lukyanov S, Lau Y F, Siebert P D.
Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes.
Methods Enzymol.
1999;
303
349-380
-
221
Robertson N G, Lu L, Heller S, Merchant S N, Eavey R D, McKenna M, Nadol J B Jr, Miyamoto R T, Linthicum F H Jr, Lubianca N eto , Hudspeth A J, Seidman C E, Morton C C, Seidman J G.
Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction.
Nat Genet.
1998;
20(3)
299-303
-
222
Weichbold V, Zorowka P.
Der Einfluss der Information über Gehörgefährdung durch laute Musik.
HNO.
2002;
50(6)
560-564
-
223
Bundesärztekammer .
Gehörschäden durch Lärmbelastung in der Freizeit, Stellungnahme des wissenschaftlichen Beirates.
Dt Ärztebl.
1999;
96(16)
C760-C763
-
224
Attias J, Bresloff I, Haupt H, Scheibe F, Ising H.
Preventing noise induced otoacoustic emission loss by increasing magnesium (Mg2+) intake in guinea-pigs.
J Basic Clin Physiol Pharmacol.
2003;
14(2)
119-136
-
225
Joachims Z, Babisch W, Ising H, Gunther T, Handrock M.
Dependence of noise-induced hearing loss upon perilymph magnesium concentration.
J Acoust Soc Am.
1983;
74(1)
104-108
-
226
Haupt H, Scheibe F.
Preventive magnesium supplement protects the inner ear against noise-induced impairment of blood flow and oxygenation in the guinea pig.
Magnes Res.
2002;
15(1 - 2)
17-25
-
227
Scheibe F, Haupt H, Ising H.
Preventive effect of magnesium supplement on noise-induced hearing loss in the guinea pig.
Eur Arch Otorhinolaryngol.
2000;
257(1)
10-16
-
228
Attias J, Weisz G, Almog S, Shahar A, Wiener M, Joachims Z, Netzer A, Ising H, Rebentisch E, Guenther T.
Oral magnesium intake reduces permanent hearing loss induced by noise exposure.
Am J Otolaryngol.
1994;
15(1)
26-32
-
229
Gil-Loyzaga P, Fernandez-Mateos P, Vicente-Torres M A, Remezal M, Cousillas H, Arce A, Esquifino A.
Effects of noise stimulation on cochlear dopamine metabolism.
Brain Res.
1993;
623(1)
177-180
-
230
d'Aldin C, Puel J L, Leducq R, Crambes O, Eybalin M, Pujol R.
Effects of a dopaminergic agonist in the guinea pig cochlea.
Hear Res.
1995;
90(1 - 2)
202-211
-
231
Ehrenberger K.
Clinical experience with caroverine in inner ear diseases.
Adv Otorhinolaryngol.
2002;
59
156-162
-
232
Oestreicher E, Arnold W, Felix D.
Neurotransmission of the cochlear inner hair cell synapse-implications for inner ear therapy.
Adv Otorhinolaryngol.
2002;
59
131-139
-
233
Oestreicher E, Ehrenberger K, Felix D.
Different action of memantine and caroverine on glutamatergic transmission in the mammalian cochlea.
Adv Otorhinolaryngol.
2002;
59
18-25
-
234
Udilova N, Kozlov A V, Bieberschulte W, Frei K, Ehrenberger K, Nohl H.
The antioxidant activity of caroverine.
Biochem Pharmacol.
2003;
65(1)
59-65
-
235
Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D.
Antioxidant therapy in acute central nervous system injury: current state.
Pharmacol Rev.
2002;
54(2)
271-284
-
236
Reed J C.
Apoptosis-based therapies.
Nat Rev Drug Discov.
2002;
1(2)
111-121
-
237
Manning A M, Davis R J.
Targeting JNK for therapeutic benefit: from junk to gold?.
Nat Rev Drug Discov.
2003;
2(7)
554-565
-
238
Wang J, Van De Water T R, Bonny C, de Ribaupierre F, Puel J L, Zine A.
A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss.
28. J Neurosci.
2003;
23(24)
8596-8607
-
239
Miller J D, Watson C S, Covell W P.
Deafening effects of noise on the cat.
Acta Otolaryngol Suppl.
1963;
176
1-91
-
240
Niu X, Canlon B.
Protective mechanisms of sound conditioning.
Adv Otorhinolaryngol.
2002;
59
96-105
-
241
Boettcher F A, Schmiedt R A.
Distortion-product otoacoustic emissions in Mongolian gerbils with resistance to noise-induced hearing loss.
J Acoust Soc Am.
1995;
98(6)
3215-3222
-
242
Ryan A F, Bennett T M, Woolf N K, Axelsson A.
Protection from noise-induced hearing loss by prior exposure to a nontraumatic stimulus: role of the middle ear muscles.
Hear Res.
1994;
72(1 - 2)
23-28
-
243
White D R, Boettcher F A, Miles L R, Gratton M A.
Effectiveness of intermittent and continuous acoustic stimulation in preventing noise-induced hearing and hair cell loss.
J Acoust Soc Am.
1998;
103(3)
1566-1572
-
244
Pukkila M, Zhai S, Virkkala J, Pirvola U, Ylikoski J.
The „toughening” phenomenon in rat's auditory organ.
Acta Otolaryngol Suppl.
1997;
529
59-62
-
245
Canlon B, Borg E, Flock A.
Protection against noise trauma by pre-exposure to a low level acoustic stimulus.
Hear Res.
1988;
34(2)
197-200
-
246
Kujawa S G, Liberman M C.
Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery.
J Neurophysiol.
1997;
78(6)
3095-3106
-
247
Miyakita T, Hellstrom P A, Frimanson E, Axelsson A.
Effect of low level acoustic stimulation on temporary threshold shift in young humans.
Hear Res.
1992;
60(2)
149-155
-
248
Boettcher F A.
Auditory brain-stem response correlates of resistance to noise-induced hearing loss in Mongolian gerbils.
J Acoust Soc Am.
1993;
94(6)
3207-3214
-
249
Clark W W, Bohne B A, Boettcher F A.
Effect of periodic rest on hearing loss and cochlear damage following exposure to noise.
J Acoust Soc Am.
1987;
82(4)
1253-1264
-
250
Sinex D G, Clark W W, Bohne B A.
Effects of periodic rest on physiological measures of auditory sensitivity following exposure to noise.
J Acoust Soc Am.
1987;
82(4)
1265-1273
-
251
Campo P, Subramaniam M, Henderson D.
The effect of „conditioning” exposures on hearing loss from traumatic exposure.
Hear Res.
1991;
55(2)
195-200
-
252
Boettcher F A, Spongr V P, Salvi R J.
Physiological and histological changes associated with the reduction in threshold shift during interrupted noise exposure.
Hear Res.
1992;
62(2)
217-236
-
253
Subramaniam M, Henderson D, Campo P, Spongr V.
The effect of „conditioning” on hearing loss from a high frequency traumatic exposure.
Hear Res.
1992;
58(1)
57-62
-
254
Fowler T, Canlon B, Dolan D, Miller J M.
The effect of noise trauma following training exposures in the mouse.
Hear Res.
1995;
88(1 - 2)
1-13
-
255
Yoshida N, Liberman M C.
Sound conditioning reduces noise-induced permanent threshold shift in mice.
Hear Res.
2000;
148(1 - 2)
213-219
-
256
Henderson D, Subramaniam M, Papazian M, Spongr V P.
The role of middle ear muscles in the development of resistance to noise induced hearing loss.
Hear Res.
1994;
74(1 - 2)
22-28
-
257
Dagli S, Canlon B.
Protection against noise trauma by sound conditioning in the guinea pig appears not to be mediated by the middle ear muscles.
Neurosci Lett.
1995;
194(1 - 2)
57-60
-
258
Zheng X Y, Henderson D, McFadden S L, Hu B H.
The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss.
Hear Res.
1997;
104(1 - 2)
191-203
-
259
Yamasoba T, Dolan D F, Miller J M.
Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses.
Hear Res.
1999;
127(1 - 2)
31-40
-
260
Yamasoba T, Dolan D F.
The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma.
Hear Res.
1998;
120(1 - 2)
143-151
-
261
Jacono A A, Hu B, Kopke R D, Henderson D, Van De Water T R, Steinman H M.
Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla.
Hear Res.
1998;
117(1 - 2)
31-38
-
262
Patuzzi R.
A four-state kinetic model of the temporary threshold shift after loud sound based on inactivation of hair cell transduction channels.
Hear Res.
1998;
125(1 - 2)
39-70
-
263
Patuzzi R.
Exponential onset and recovery of temporary threshold shift after loud sound: evidence for long-term inactivation of mechano-electrical transduction channels.
Hear Res.
1998;
125(1 - 2)
17-38
-
264
Lamm K, Arnold W.
How useful is corticosteroid treatment in cochlear disorders?.
Otorhinolaryngol Nova.
1999;
9
203-216
-
265
Niedermeyer H P, Zahneisen G, Luppa P, Busch R, Arnold W.
Cortisol levels in the human perilymph after intravenous administration of prednisolone.
Audiol Neurootol.
2003;
8(6)
316-321
-
266
Bachmann G, Su J, Zumegen C, Wittekindt C, Michel O.
Permeabilität der runden Fenstermembran für Prednisolon-21-Hydrogensuccinat.
HNO.
2001;
49(7)
538-542
-
267
Parnes L S, Sun A H, Freeman D J.
Corticosteroid pharmacokinetics in the inner ear fluids: an animal study followed by clinical application.
Laryngoscope.
1999;
109(7 Pt 2)
1-17
-
268
Lefebvre P P, Malgrange B, Lallemend F, Staecker H, Moonen G, van de Water T R.
Mechanisms of cell death in the injured auditory system: otoprotective strategies.
Audiol Neurootol.
2002;
7(3)
165-170
-
269
Joachims Z, Netzer A, Ising H, Rebentisch E, Attias J, Weisz G, Gunther T.
Oral magnesium supplementation as prophylaxis for noise-induced hearing loss: results of a double blind field study.
Schriftenr Ver Wasser Boden Lufthyg.
1993;
88
503-516
-
270
Haupt H, Scheibe F, Mazurek B.
Therapeutic efficacy of magnesium in acoustic trauma in the guinea pig.
ORL J Otorhinolaryngol Relat Spec.
2003;
65(3)
134-139
-
271
Scheibe F, Haupt H, Mazurek B, Konig O.
Therapeutic effect of magnesium on noise-induced hearing loss.
Noise Health.
2001;
3(11)
79-84
-
272
Scheibe F, Haupt H, Ising H, Cherny L.
Therapeutic effect of parenteral magnesium on noise-induced hearing loss in the guinea pig.
Magnes Res.
2002;
15(1 - 2)
27-36
-
273
Rebillard G, Ruel J, Nouvian R, Saleh H, Pujol R, Dehnes Y, Raymond J, Puel J L, Devau G.
Glutamate transporters in the guinea-pig cochlea: partial mRNA sequences, cellular expression and functional implications.
Eur J Neurosci.
2003;
17(1)
83-92
-
274
Moser T, Beutner D.
Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse.
Proc Natl Acad Sci U S A.
2000;
97(2)
883-888
-
275
Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J.
Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels.
Cell.
2000;
102(1)
89-97
-
276
Engel J, Michna M, Platzer J, Striessnig J.
Calcium channels in mouse hair cells: function, properties and pharmacology.
Adv Otorhinolaryngol.
2002;
59
35-41
-
277 Springer J E, Kitzman P H. Neuroprotective strategies involving the neurotrophins and their signaling pathways. In: Mattson MP (ed) Neuroprotective Signal Transduction. New Jersey; Humana Press 1998: 1-22
-
278
Keithley E M, Ma C L, Ryan A F, Louis J C, Magal E.
GDNF protects the cochlea against noise damage.
Neuroreport.
1998;
9(10)
2183-2187
-
279
Avraham K B, Raphael Y.
Prospects for gene therapy in hearing loss.
J Basic Clin Physiol Pharmacol.
2003;
14(2)
77-83
-
280
Lalwani A K, Jero J, Mhatre A N.
Current issues in cochlear gene transfer.
Audiol Neurootol.
2002;
7(3)
146-151
-
281
Staecker H, Li D, O'Malley B W Jr, van de Water T R.
Gene expression in the mammalian cochlea: a study of multiple vector systems.
Acta Otolaryngol.
2001;
121(2)
157-163
-
282
Stover T, Yagi M, Raphael Y.
Cochlear gene transfer: round window versus cochleostomy inoculation.
Hear Res.
1999;
136(1 - 2)
124-130
-
283
Lange G.
27 years experiences with transtympanic aminoglycoside treatment of Meniere's disease.
Laryngorhinootologie.
1995;
74(12)
720-723
-
284
Alzamil K S, Linthicum F H, Jr.
Extraneous round window membranes and plugs: possible effect on intratympanic therapy.
Ann Otol Rhinol Laryngol.
2000;
109(1)
30-32
-
285
Plontke S K, Plinkert P K, Plinkert B, Koitschev A, Zenner H P, Lowenheim H.
Transtympanic endoscopy for drug delivery to the inner ear using a new microendoscope.
Adv Otorhinolaryngol.
2002;
59
149-155
-
286
Plontke S K, Wood A W, Salt A N.
Analysis of gentamicin kinetics in fluids of the inner ear with round window administration.
Otol Neuro-otol.
2002;
23(6)
967-974
-
287
Plontke S K, Salt A N.
Quantitative interpretation of corticosteroid pharmakokinetics in innner ear fluids using computer simulations.
Hear Res.
2003;
182
34-42
-
288
Arriaga M A, Goldman S.
Hearing results of intratympanic steroid treatment of endolymphatic hydrops.
Laryngoscope.
1998;
108(11 Pt 1)
1682-1685
-
289
Hoffer M E, Balough B, Henderson J, DeCicco M, Wester D, O'Leary M J, Kopke R.
Use of sustained release vehicles in the treatment of Meniere's disease.
Otolaryngol Clin North Am.
1997;
30(6)
1159-1166
-
290
Thomsen J, Charabi S, Tos M.
Preliminary results of a new delivery system for gentamicin to the inner ear in patients with Meniere's disease.
Eur Arch Otorhinolaryngol.
2000;
257(7)
362-365
-
291
Kopke R D, Hoffer M E, Wester D, O'Leary M J, Jackson R L.
Targeted topical steroid therapy in sudden sensorineural hearing loss.
Otol Neurootol.
2001;
22(4)
475-479
-
292
Lehner R, Brugger H, Maassen M M, Zenner H P.
A totally implantable drug delivery system for local therapy of the middle and inner ear.
Ear Nose Throat J.
1997;
76(8)
567-570
-
293
Praetorius M, Limberger A, Muller M, Lehner R, Schick B, Zenner H P, Plinkert P, Knipper M.
A novel microperfusion system for the long-term local supply of drugs to the inner ear: implantation and function in the rat model.
Audiol Neurootol.
2001;
6(5)
250-258
-
294
Goycoolea M V.
Clinical aspects of round window membrane permeability under normal and pathological conditions.
Acta Otolaryngol.
2001;
121(4)
437-447
-
295
Hoffer M E, Allen K, Kopke R D, Weisskopf P, Gottshall K, Wester D.
Transtympanic versus sustained-release administration of gentamicin: kinetics, morphology, and function.
Laryngoscope.
2001;
111(8)
1343-1357
-
296
Salt A N, Kellner C, Hale S.
Contamination of perilymph samples from the basal cochlear fluid with cerebrospinal fluid.
Hear Res.
2003;
182(1 - 2)
24-33
-
297
Wienke A.
The Bonn declaration regarding the future of hearing aid management 7.
HNO.
2002;
50(9)
861-862
-
298 Zenner H P. Implantable hearing devices: an introduction. In: Jahnke K (ed) Middle Ear Surgery - Recent Advances and Future Directions. Stuttgart, New York; Thieme 2004: 141-160
-
299
Zenner H P.
A Systematic classification of tinnitus generator mechanisms.
Int Tinnitus J.
1998;
4(2)
109-113
-
300
Zenner H P.
Systematics for mechanisms of tinnitus development.
HNO.
1998;
46(8)
699-704
-
301
Jastreboff P J.
Phantom auditory perception (tinnitus): mechanisms of generation and perception.
Neurosci Res.
1990;
8(4)
221-254
-
302
Jastreboff P J, Hazell J W.
A neurophysiological approach to tinnitus: clinical implications.
Br J Audiol.
1993;
27(1)
7-17
-
303
Zenner H P.
Kognitive Tinnitusdesensitivierung - evidenzbasierte und leitliniengerechte Habituationstherapie bei chronischer Tinnitussensitivierung.
HNO.
2003;
51(9)
687-689
-
304
Zenner H P, Zalaman I.
Cognitive tinnitus sensitization - behavioral and neurophysiological aspects of tinnitus centralization.
Acta Otolaryngol,.
in press;
-
305 Birbaumer N, Schmidt R F. Wachen, Aufmerksamkeit und Schlafen; Lernen und Gedächtnis. In: Schmidt RF, Tews G, (Hrsg) Physiologie des Menschen. Heidelberg, New York; Springer 1997: 141-166
-
306
Overmier J B.
Sensitization, conditioning, and learning: can they help us understand somatization and disability? 12.
Scand J Psychol.
2002;
43(2)
105-112
-
307
DGHNO Leitlinie .
Tinnitus.
AWMF-Leitlin Reg.
1998;
017/064
-
308
Jastreboff P J, Jastreboff M M.
Tinnitus retraining therapy for patients with tinnitus and decreased sound tolerance.
Otolaryngol Clin North Am.
2003;
36(2)
321-336
-
309
Wilson P H, Henry J L, Andersson G, Hallam R S, Lindberg P.
A critical analysis of directive counselling as a component of tinnitus retraining therapy.
Br J Audiol.
1998;
32(5)
273-286
-
310
Goebel G.
Retraining therapy in tinnitus. Paradigm change or old wine in new bottles?.
HNO.
1997;
45(9)
664-667
-
311
von Wedel H, von Wedel U C.
An assessment of tinnitus retraining therapy.
HNO.
2000;
48(12)
887-901
-
312
Berry J A, Gold S L, Frederick E A, Gray W C, Staecker H.
Patient-based outcomes in patients with primary tinnitus undergoing tinnitus retraining therapy.
Arch Otolaryngol Head Neck Surg.
2002;
128(10)
1153-1157
-
313
Delb W, D'Amelio R, Boisten C J, Plinkert P K.
Evaluation of the tinnitus retraining therapy as combined with a cognitive behavioral group therapy.
HNO.
2002;
50(11)
997-1004
-
314
Wang H, Jiang S, Yang W, Han D.
Tinnitus retraining therapy: a clinical control study of 117 patients.
Zhonghua Yi Xue Za Zhi.
2002;
82(21)
1464-1467
-
315
Kroner-Herwig B, Hebing G, Rijn-Kalkmann U, Frenzel A, Schilkowsky G, Esser G.
The management of chronic tinnitus-comparison of a cognitive-behavioural group training with yoga.
J Psychosom Res.
1995;
39(2)
153-165
-
316
Wise K, Rief W, Goebel G.
Meeting the expectations of chronic tinnitus patients: comparison of a structured group therapy program for tinnitus management with a problem-solving group.
J Psychosom Res.
1998;
44(6)
681-685
-
317 Fechter L, Chen G, Rao D. Noise and occupational exposures. In: Henderson D, Prasher D, Kopke R., Hamernik RP (eds) Noise Induced Hearing Loss: Basic Mechanisms, Prevention and Control. London; NRN publications 2001: 305-318
-
318
Morata T C, Engel T, Durao A, Costa T R, Krieg E F, Dunn D E, Lozano M A.
Hearing loss from combined exposures among petroleum refinery workers.
Scand Audiol.
1997;
26(3)
141-149
-
319
Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, Kotylo P, Fiszer M, Wesolowski W, Pawlaczyk-Luszczynska M.
Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise.
J Occup Environ Med.
2003;
45(1)
15-24
-
320
Fearn R W.
Serial audiometry in young people exposed to loud amplified pop music.
J Sound Vibration.
1981;
74
459-462
-
321
Clark W W.
Noise exposure from leisure activities: a review.
J Acoust Soc Am.
1991;
90(1)
175-181
-
322
Axelsson A, Jerson T, Lindgren F.
Noisy leisure time activities in teenage boys.
Am Ind Hyg Assoc J.
1981;
42(3)
229-233
-
323
Quirk W S, Shivapuja B G, Schwimmer C L, Seidman M D.
Lipid peroxidation inhibitor attenuates noise-induced temporary threshold shifts.
Hear Res.
1994;
74(1 - 2)
217-220
-
324
Shoji F, Miller A L, Mitchell A, Yamasoba T, Altschuler R A, Miller J M.
Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss.
Hear Res.
2000;
146(1 - 2)
134-142
-
325
Duan M, Agerman K, Ernfors P, Canlon B.
Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity.
Proc Natl Acad Sci U S A.
2000;
97(13)
7597-7602
-
326
Wang J, Dib M, Lenoir M, Vago P, Eybalin M, Hameg A, Pujol R, Puel J L.
Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig.
Neuroscience.
2002;
111(3)
635-648
-
327
Chen Z, Ulfendahl M, Ruan R, Tan L, Duan M.
Acute treatment of noise trauma with local caroverine application in the guinea pig.
Acta Otolaryngol.
2003;
123(8)
905-909
-
328
Ohinata Y, Miller J M, Schacht J.
Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea.
Brain Res.
2003;
966(2)
265-273
-
329
Wang J, Ding D, Shulman A, Stracher A, Salvi R J.
Leupeptin protects sensory hair cells from acoustic trauma.
Neuroreport.
1999;
10(4)
811-816
-
330
d'Aldin C, Cherny L, Devriere F, Dancer A.
Treatment of acoustic trauma.
Ann N Y Acad Sci.
1999;
884
328-344
-
331
Lamm K, Arnold W.
Successful treatment of noise-induced cochlear ischemia, hypoxia, and hearing loss.
Ann N Y Acad Sci.
1999;
884
233-248
-
332
Lamm K, Arnold W.
The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear.
Hear Res.
2000;
141(1 - 2)
199-219
-
333 Lomax M I, Gong T W, Cho Y, Huang L, Oh S H, Adler H J, Raphael Y, Altschuler R A. Differential gene expression following noise trauma in birds and mammals. In: Henderson D, Prasher D, Kopke R, Hamernik RP (eds) Noise Induced Hearing Loss: Basic mechanisms, prevention and control. London; NRN publications 2001: 55-71
-
334
Gong T W, Hegeman A D, Shin J J, Adler H J, Raphael Y, Lomax M I.
Identification of genes expressed after noise exposure in the chick basilar papilla.
Hear Res.
1996;
96(1 - 2)
20-32
-
335
Gong T W, Huang L, Warner S J, Lomax M I.
Characterization of the human UBE3B gene: structure, expression, evolution, and alternative splicing small star, filled.
Genomics.
2003;
82(2)
143-152
-
336
Adler H J, Winnicki R S, Gong T W, Lomax M I.
A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein.
Genomics.
1999;
56(1)
59-69
-
337
Gong T W, Shin J J, Burmeister M, Lomax M I.
Complete cDNAs for CDC42 from chicken cochlea and mouse liver.
Biochim Biophys Acta.
1997;
1352(3)
282-292
-
338
Gong T W, Winnicki R S, Kohrman D C, Lomax M I.
A novel mouse kinesin of the UNC-104/KIF1 subfamily encoded by the Kif1b gene.
Gene.
1999;
239(1)
117-127
-
339
Gong T W, Besirli C G, Lomax M I.
MACF1 gene structure: a hybrid of plectin and dystrophin.
Mamm Genome.
2001;
12(11)
852-861
-
340 Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Haynes B, Dawes M. Levels of Evidence. Oxford Centre for Evidence-based Medicine 2001. http://www.cebm.net/levels_of_evidence
-
341
Johnstone B M, Patuzzi R, Yates G K.
Basilar membrane measurements and the travelling wave.
Hear Res.
1986;
22
147-153
-
342 von Békésy G. Experiments in Hearing. New York; McGraw-Hill 1960
-
343
Collet L, Veuillet E, Moulin A, Morlet T, Giraud A L, Micheyl C, Chery-Croze S.
Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans.
Br J Audiol.
1994;
28(4 - 5)
213-218
0 Teile der Abschnitte 6.4 und 6.5 wurden mit freundlicher Genehmigung teilweise entnommen aus: Zenner et al. HNO 47, 1999, 236 - 248 [7].
1 Wir danken Dr. H. Löwenheim, Tübingen, für die kritische Durchsicht dieses Kapitels.
Dr. med. Stefan Plontke
Klinik für Hals-, Nasen- und Ohrenheilkunde am Universitätsklinikum Tübingen ·
Elfriede-Aulhorn-Straße 5 · 72076 Tübingen
Email: Stefan.Plontke@uni-tuebingen.de