Laryngorhinootologie 2004; 83: 122-164
DOI: 10.1055/s-2004-814354
© Georg Thieme Verlag KG Stuttgart · New York

Aktuelle Gesichtspunkte zu Hörschäden durch Berufs- und Freizeitlärm

S.  Plontke1 , H.-P.  Zenner1
  • 1 Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde Tübingen (Direktor: Prof. Dr. med. Dr. h.c. mult. H.-P. Zenner)
Further Information

Publication History

Publication Date:
05 May 2004 (online)

Zusammenfassung

Hörschäden durch Berufs- und Freizeitlärm gehören zu den häufigsten Ursachen einer erworbenen Innenohrschwerhörigkeit. Die vorliegende Arbeit gibt eine Übersicht über die aktuellen Erkenntnisse zur Pathophysiologie der Lärmschädigung des Innenohres unter besonderer Berücksichtigung moderner molekularbiologischer und genetischer Aspekte. Ebenso werden epidemiologische Gesichtspunkte, insbesondere die Bedeutung fehlender Lärmerholungspausen durch zusätzliche Exposition mit Freizeitlärm und die kombinierte Exposition mit Lärm und Chemikalien betrachtet. Ausgehend von den Erkenntnissen zur Epidemiologie und Pathophysiologie werden vor dem Hintergrund der aktuellen wissenschaftlichen Literatur zu tierexperimentellen präklinischen und klinischen Studien die unterschiedlichen Ansatzpunkte der Prävention, Protektion und therapeutischen Intervention bei Schalltrauma diskutiert. Dabei finden sowohl pharmakologische Strategien, wie z. B. mit antioxidativen, antiexzitotoxischen, antiapoptotischen u. a. Substanzen, als auch nichtpharmakologische Strategien wie die Schallkonditionierung Berücksichtigung. Weiterhin werden die systemische und lokale Applikation sowie die Therapie des akuten Schalltraumas und der chronischen Lärmschwerhörigkeit einschließlich moderner Therapieformen für Komorbiditäten wie Tinnitus erläutert.

Literatur

  • 1 Kowalska S, Sulkowski W. Actual and perspective activities of the European Union concerning protection against noise.  Med Pr. 1997;  48(6) 703-712
  • 2 Plontke S K, Dietz K, Pfeffer C, Zenner H P. The incidence of acoustic trauma due to New Year's firecrackers.  Eur Arch Otorhinolaryngol. 2002;  259(5) 247-252
  • 3 Fleischer G, Hoffmann E, Muller R, Lang R. Kinderknallpistolen und ihre Wirkung auf das Gehör.  HNO. 1998;  46(9) 815-820
  • 4 Plath P. Hearing loss caused by leisure activity-induced noise.  HNO. 1994;  42(8) 483-487
  • 5 Plath P. Sozioakusis: Nicht beruflich bedingte Gehörschäden, Teil 2.  HNO. 1998;  46(11) 947-952
  • 6 Plath P. Sozioakusis: Nicht beruflich bedingte Gehörschäden, Teil 1.  HNO. 1998;  46(10) 887-892
  • 7 Zenner H P, Struwe V, Schuschke G, Spreng M, Stange G, Plath P, Babisch W, Rebentisch E, Plinkert P, Bachmann K D, Ising H, Lehnert G. Gehörschäden durch Freizeitlärm.  HNO. 1999;  47(4) 236-248
  • 8 Zenner H P. Hören, Physiologie, Biochemie, Zell- und Neurobiologie. Stuttgart, New York; Thieme 1994
  • 9 Dieroff H G. Sozioakusis und Impulslärm.  HNO-Praxis. 1997;  4 494-499
  • 10 Dieroff H G. Lärmschwerhörigkeit. 3 ed. Jena, Stuttgart; G.-Fischer-Verlag 1994
  • 11 Hawkins J E, Jr. Comparative otopathology: aging, noise, and ototoxic drugs.  Adv Otorhinolaryngol. 1973;  20 125-141
  • 12 Henderson D, Hamernik R P. Biologic bases of noise-induced hearing loss.  Occup Med. 1995;  10(3) 513-534
  • 13 Lehnhardt E, Koch T. Akustisches Trauma. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrg) Oto-Rhino-Laryngologie in Klinik und Praxis. Stuttgart; Thieme Verlag 1994: 757-767
  • 14 Pfander F. Das Knalltrauma. Berlin; Springer-Verlag 1975
  • 15 Saunders J C, Dear S P, Schneider M E. The anatomical consequences of acoustic injury: A review and tutorial.  J Acoust Soc Am. 1985;  78(3) 833-860
  • 16 Saunders J C, Cohen Y E, Szymko Y M. The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update.  J Acoust Soc Am. 1991;  90(1) 136-146
  • 17 ISO 1999 .Acoustics-Determination of occupational noise exposure and estimation of noise-induced hearing impairment. International Organization for Standardization. Geneva; 1990
  • 18 ISO DIS 1999 .Acoustics-Determination of occupational noise exposure and estimation of noise-induced hearing impairment. Geneva; International Organization for Standardization 1985
  • 19 Passchier-Vermeer W. Hearing loss due to exposure to steady-state broad band noise. Institut voor Gezondheitstechniek, Sound and Light Division 1968
  • 20 VDI 2058 B2V2B2 .Beurteilungspegel von Lärm hinsichtlich Gehörschäden. Verein Deutscher Ingenieure Düsseldorf; 1988
  • 21 UVV .Arbeitsmedizinische Vorsorge. VBG 100. Fassung 1997. Köln; Heymanns 1990
  • 22 UVV .Lärm. VBG 121. Fassung 1997. Köln; Heymanns 1990
  • 23 Barregard L, Axelsson A. Is there an ototraumatic interaction between noise and solvents?.  Scand Audiol. 1984;  13(3) 151-155
  • 24 Bergstrom B, Nystrom B. Development of hearing loss during long-term exposure to occupational noise. A 20-year follow-up study.  Scand Audiol. 1986;  15(4) 227-234
  • 25 Lautermann J, Crann S A, McLaren J, Schacht J. Glutathione-dependent antioxidant systems in the mammalian inner ear: effects of aging, ototoxic drugs and noise.  Hear Res. 1997;  114(1 - 2) 75-82
  • 26 Morata T C. Chemical exposure as a risk factor for hearing loss.  J Occup Environ Med. 2003;  45(7) 676-682
  • 27 Mäkitie A A, Pirvola U, Pyykko I, Sakakibara H, Riihimaki V, Ylikoski J. The ototoxic interaction of styrene and noise.  Hear Res. 2003;  179(1 - 2) 9-20
  • 28 Morata T C, Nylen P, Johnson A C, Dunn D E. Auditory and vestibular functions after single or combined exposure to toluene: a review.  Arch Toxicol. 1995;  69(7) 431-443
  • 29 Morata T C, Johnson A C, Nylen P, Svensson E B, Cheng J, Krieg E F, Lindblad A C, Ernstgard L, Franks J. Audiometric findings in workers exposed to low levels of styrene and noise.  J Occup Environ Med. 2002;  44(9) 806-814
  • 30 Odkvist L M, Larsby B, Tham R, Ahlfeldt H, Andersson B, Eriksson B, Liedgren S R. Vestibulo-oculomotor disturbances in humans exposed to styrene.  Acta Otolaryngol. 1982;  94(5 - 6) 487-493
  • 31 Teixeira C F, Giraldo D a, Morata T C. Occupational exposure to insecticides and their effects on the auditory system.  Noise Health. 2002;  4(14) 31-39
  • 32 Boettcher F A, Henderson D, Gratton M A, Danielson R W, Byrne C D. Synergistic interactions of noise and other ototraumatic agents.  Ear Hear. 1987;  8(4) 192-212
  • 33 Johnson A C, Nylen P R. Effects of industrial solvents on hearing.  Occup Med. 1995;  10(3) 623-640
  • 34 Fechter L D. Effects of acute styrene and simultaneous noise exposure on auditory function in the guinea pig.  Neurotoxicol Teratol. 1993;  15(3) 151-155
  • 35 Morata T C, Campo P. Auditory function after single or combined exposure to styrene: a review. In: Henderson D, Prasher D, Kopke R., Hamernik RP, (eds) Noise induced hearing loss: basic mechanisms, prevention and control. London; NRN publications 2001: 293-302
  • 36 Loquet G, Campo P, Lataye R, Cossec B, Bonnet P. Combined effects of exposure to styrene and ethanol on the auditory function in the rat.  Hear Res. 2000;  148(1 - 2) 173-180
  • 37 Prasher D, Morata T, Campo P, Fechter L, Johnson A C, Lund S P, Pawlas K, Starck J, Sliwinska-Kowalska M, Sulkowski W. NoiseChem: A European Commission research project on the effects of exposure to noise and industrial chemicals on hearing and balance.  Noise Health. 2002;  4(14) 41-48
  • 38 Zenner H P. Freizeitlärm-Gehörschäden bei jedem zehnten Jugendlichen zu befürchten.  HNO. 1999;  47(4) 225
  • 39 Babisch W, Ising H, Gallacher J E. Health status as a potential effect modifier of the relation between noise annoyance and incidence of ischaemic heart disease.  Occup Environ Med. 2003;  60(10) 739-745
  • 40 Borchgrevink H M. One third of 18 year old male conscripts show noise induced hearing loss >20 dB before start of military service. The incidence being doubled since 1981. Reflecting increased leisure noise?. In: Berglund B, Berglund U, Karlsson J, Lindvall T (eds) Proceedings of the 5th International Congress On Noise As A Public Health Problem, Stockholm. Stockholm; Council of Building Research 1988: 27-32
  • 41 Borchgrevink H M. Music-induced hearing loss >20 dB affects 30 % of Norwegian 18 year old males befor military service - The incidence doubled in the 80's, declining in the 90's. Noise and Man '93, Proceedings of the 5th International Congress On Noise As A Public Health Problem. Nice; 1993 2: 25-28
  • 42 Ising H, Babisch W, Gandert J, Scheuermann B. Hörschäden bei jugendlichen Berufsanfängern aufgrund von Freizeitlärm und Musik.  Z Lärmbekämpfung. 1988;  35 35-41
  • 43 Korpert K. Hearing thresholds of young workers measured in the period from 1976 to 1991. Swiss Acoust Soc 1992: 181-184
  • 44 Hellstrom P A, Axelsson A. Sound levels habits and hazards of using portable cassette players.  J Sound Vibration. 1988;  127 521-528
  • 45 Ising H, Babisch W, Kruppa B. Loud music and hearing risk.  Audiol Med. 1997;  6 123-133
  • 46 Ising H, Hanel J, Pilgramm M, Babisch W, Lindthammer A. Gehörschadensrisiko durch Musikhören mit Kopfhörern.  HNO. 1994;  42(12) 764-768
  • 47 Rice C G, Rossi G, Olina M. Damage risk criteria from personal cassette players.  Br J Audiol. 1987;  21 279-288
  • 48 Richter U. Wird eine Zulassungsprüfung von Mini-Kassettengeräten („Walkman®”) notwendig?.  Strahlensch Aktuel. 1990;  6 25-26
  • 49 Struwe F, Jansen G, Schwarze S, Schwenzer C, Nitzsche M. Untersuchung von Hörgewohnheiten und möglichen Gehörrisiken durch Schalleinwirkungen in der Freizeit unter besonderer Berücksichtigung des Walkman®-Hörens. In: Babisch W, Bambach G, Ising H, Kruppa B, Plath P, Rebentisch E et al. (Hrsg) Gehörgefährdung durch laute Musik und Freizeitlärm. Berlin; WaBoLu Hefte 5. Umweltbundesamt 1996: 144-154
  • 50 Hoffmann E. Hörfähigkeit und Hörschäden junger Erwachsener unter Berücksichtigung der Lärmbelastung. Heidelberg; Median-Verlag 1997
  • 51 Struwe F, Jansen G, Schwarze S, Schwenzer C, Nitzsche M, Notbohm G. Hearing loss induced by leisure noise: subjective evaluation and audiometric assessment. In: Newman M (ed) Proceedings of the 15th International Congress on Acoustics Trondheim. 1995: 303-305
  • 52 Rudloff F, Specht von H, Penk J, Schuschke G. Untersuchungen zu Ausmaß und möglichen Folgen jugendlichen Musikkonsums. Teil 3: Ergebnisse von Schallpegelmessungen und audiologischen Untersuchungen.  Z Lärmbekämpfung. 1996;  43 9-14
  • 53 Davis A C, Fortnum H M, Coles R A, Haggard M P, Lutman M E. Damage to hearing arising from leisure noise: a review of the literature. Report prepared for the Health and Saftey Executive by the MRC Institute of Hearing Research. Nottingham. London; Her Majaesty's Stationary Office 1985
  • 54 Babisch W, Ising H. Musikhörgewohnheiten bei Jugendlichen.  Z Lärmbekämpfung. 1994;  41 91-97
  • 55 Ising H, Babisch W, Hanel J, Kruppa B, Pilgramm M. Empirische Untersuchungen zu Musikhörgewohnheiten von Jugendlichen.  HNO. 1995;  43(4) 244-249
  • 56 Bickerdike J, Gregory A. An evaluation of hearing damage risk to attenders at discotheques. Report. Leeds Polytechnical School of Constructional Studies Dept Environment 1980
  • 57 Smoorenburg G F. Risk of noise-induced hearing loss following exposure to Chinese firecrackers.  Audiology. 1993;  32(6) 333-343
  • 58 Maglieri D J, Henderson H R. Noise from aerial bursts of fireworks.  J Acoust Soc Am. 1973;  54(5) 1224-1227
  • 59 Just T, Pau H W, Kaduk W, Hingst V. Schalldruckpegelmessungen und Impulsdauerbestimmungen handelsüblicher Schreckschusswaffen.  HNO. 2000;  48(12) 943-948
  • 60 Rothschild M A, Dieker L, Prante H, Maschke C. Schalldruckspitzenpegel von Schüssen aus Schreckschusswaffen.  HNO. 1998;  46(12) 986-992
  • 61 Byl F M, Jr. Sudden hearing loss: eight years' experience and suggested prognostic table.  Laryngoscope. 1984;  94(5 Pt 1) 647-661
  • 62 Plontke S, Herrmann C, Zenner H P. Gehörschäden durch Silvester-Feuerwerkskörper in der Bundesrepublik Deutschland zur Jahreswende 1998/99.  HNO. 1999;  47(12) 1017-1019
  • 63 Fleischer G, Mueller R, Bache T, Heppelmann G. Auditory effects of some millennium celebrations in Germany.  Zeitschrift für Audiologie, Audiological Acoustics. 2003;  42 106-116
  • 64 Beyer P, Schubert M, Plontke S, Zenner H P. Zivil- und strafrechtliche Aspekte von Gehörschäden durch Silvesterfeuerwerkskörper.  Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitschutz. 2003;  46 59-62
  • 65 Pfeffer C, Dietz K, Zenner H P, Plontke S. Acoustic trauma due to New Year's firecrackers - long-term results of an epidemiologic study. Abs. DGHNO 2003.  Eur Arch Otorhinolaryngol. 2002;  259 481
  • 66 Plontke S, Scheiderbauer H, Vonthein R, Plinkert P K, Lowenheim H, Zenner H P. Erholung der Hörschwelle nach Knalltrauma durch Feuerwerkskörper und Signalpistolen.  HNO. 2003;  51(3) 245-250
  • 67 Mrena R, Savolainen S, Kuokkanen J T, Ylikoski J. Characteristics of tinnitus induced by acute acoustic trauma: a long-term follow-up.  Audiol Neurootol. 2002;  7(2) 122-130
  • 68 Gupta D, Vishwakarma S K. Toy weapons and firecrackers: a source of hearing loss.  Laryngoscope. 1989;  99(3) 330-334
  • 69 Stockwell C W, Ades H W, Engstrom H. Patterns of hair cell damage after intense auditory stimulation.  Ann Otol Rhinol Laryngol. 1969;  78 1144-1168
  • 70 Beck C. Kernveränderungen der Haarzellen nach Beschallung.  Arch Ohr Nas Kehlk Heilk. 1955;  167 262-267
  • 71 Beck C, Michler H. Feinstrukturelle und histochemische Veränderungen an den Strukturen der Cochlea beim Meerschweinchen nach dosierter Reintonbeschallung.  Arch Ohr Nas Kehlk Heilk. 190;  174 496-499
  • 72 Spoendlin H. Ultrastructural features of the organ of Corti in normal and acoustically stimulated animals.  Ann Otol Rhinol Laryngol. 1962;  71 657-677
  • 73 Spoendlin H. Primary structural changes in the organ of Corti after acoustic overstimulation.  Acta Otolaryngol. 1971;  71(2) 166-176
  • 74 Brownell W E, Bader C R, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells.  Science. 1985;  227(4683) 194-196
  • 75 Zenner H P, Zimmermann U, Schmitt U. Reversible contraction of isolated mammalian cochlear hair cells.  Hear Res. 1985;  18(2) 127-133
  • 76 Zenner H P. Motile responses in outer hair cells.  Hear Res. 1986;  22 83-90
  • 77 Zenner H P, Zimmermann U, Gitter A H. Fast motility of isolated mammalian auditory sensory cells.  Biochem Biophys Res Commun. 1987;  149(1) 304-308
  • 78 Zheng J, Shen W, He D Z, Long K B, Madison L D, Dallos P. Prestin is the motor protein of cochlear outer hair cells.  Nature. 2000;  405(6783) 149-155
  • 79 Preyer S, Gummer A W. Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment.  Audiol Neurootol. 1996;  1(1) 3-11
  • 80 Lehnhardt E. Klinik der Innenohrschwerhörigkeiten.  Arch Otorhinolaryngol. 1984;  Suppl. 1 58-218
  • 81 Le Page E L, Johnstone B M. Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea.  Hear Res. 1980;  2(3 - 4) 183-189
  • 82 Geisler C D. The responses of models of „high-spontaneous” auditory-nerve fibers in a damaged cochlea to speech syllables in noise.  J Acoust Soc Am. 1989;  86(6) 2192-2205
  • 83 Leysieffer H, Baumann J W, Muller G, Zenner H P. Ein implantierbarer piezoelektrischer Hörgerätewandler für Innenohrschwerhörige, Teil II: Klinisches Implantat.  HNO. 1997;  45(10) 801-815
  • 84 Roberto M, Hamernik R P, Turrentine G A. Damage of the auditory system associated with acute blast trauma.  Ann Otol Rhinol Laryngol Suppl. 1989;  140 23-34
  • 85 Wang Y, Hirose K, Liberman M C. Dynamics of noise-induced cellular injury and repair in the mouse cochlea.  J Assoc Res Otolaryngol. 2002;  3(3) 248-268
  • 86 Nordmann A S, Bohne B A, Harding G W. Histopathological differences between temporary and permanent threshold shift.  Hear Res. 2000;  139(1 - 2) 13-30
  • 87 Tilney L G, Saunders J C, Egelman E, DeRosier D J. Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae.  Hear Res. 1982;  7(2) 181-197
  • 88 Liberman M C, Dodds L W. Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates.  Hear Res. 1984;  16(1) 43-53
  • 89 Choi D W. Excitotoxic cell death.  J Neurobiol. 1992;  23(9) 1261-1276
  • 90 Gutteridge J M, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future.  Ann N Y Acad Sci. 2000;  899 136-147
  • 91 Mattson M P. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders.  Neuromolecular Med. 2003;  3(2) 65-94
  • 92 Kopke R, Allen K A, Henderson D, Hoffer M, Frenz D, van de WT . A radical demise. Toxins and trauma share common pathways in hair cell death.  Ann N Y Acad Sci. 1999;  884 171-191
  • 93 Duncan R K, Saunders J C. Stereocilium injury mediates hair bundle stiffness loss and recovery following intense water-jet stimulation.  J Comp Physiol [A]. 2000;  186(11) 1095-1106
  • 94 Saunders J C, Schneider M E, Dear S P. The structure and function of actin in hair cells.  J Acoust Soc Am. 1985;  78(1 Pt 2) 299-311
  • 95 Adler H J, Kenealy J F, DeDio R M, Saunders J C. Threshold shift, hair cell loss, and hair bundle stiffness following exposure to 120 and 125 dB pure tones in the neonatal chick.  Acta Otolaryngol. 1992;  112(3) 444-454
  • 96 Hu B H, Henderson D, Nicotera T M. F-actin cleavage in apoptotic outer hair cells in chinchilla cochleas exposed to intense noise.  Hear Res. 2002;  172(1 - 2) 1-9
  • 97 Schneider M E, Belyantseva I A, Azevedo R B, Kachar B. Rapid renewal of auditory hair bundles.  Nature. 2002;  418(6900) 837-838
  • 98 Evans P, Halliwell B. Free radicals and hearing. Cause, consequence, and criteria.  Ann N Y Acad Sci. 1999;  884 19-40
  • 99 Miller J M, Schacht J, Altschuler R. Prevention of noise-induced hearing loss. In: Henderson D, Prasher D, Kopke R., Hamernik RP (eds) Noise Induced Hearing Loss: Basic Mechanisms, Prevention and Control. London; NRN publications 2001: 215-230
  • 100 Ohlemiller K K, Wright J S, Dugan L L. Early elevation of cochlear reactive oxygen species following noise exposure.  Audiol Neurootol. 1999;  4(5) 229-236
  • 101 Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima A. Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma.  Eur Arch Otorhinolaryngol. 1995;  252(8) 504-508
  • 102 Yamasoba T, Harris C, Shoji F, Lee R J, Nuttall A L, Miller J M. Influence of intense sound exposure on glutathione synthesis in the cochlea.  Brain Res. 1998;  804(1) 72-78
  • 103 Pourbakht A, Yamasoba T. Ebselen attenuates cochlear damage caused by acoustic trauma.  Hear Res. 2003;  181(1 - 2) 100-108
  • 104 Hight N G, McFadden S L, Henderson D, Burkard R F, Nicotera T. Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA.  Hear Res. 2003;  179(1 - 2) 21-32
  • 105 Hu B H, Zheng X Y, McFadden S L, Kopke R D, Henderson D. R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla.  Hear Res. 1997;  113(1 - 2) 198-206
  • 106 Kopke R D, Weisskopf P A, Boone J L, Jackson R L, Wester D C, Hoffer M E, Lambert D C, Charon C C, Ding D L, McBride D. Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla.  Hear Res. 2000;  149(1 - 2) 138-146
  • 107 Kopke R D, Coleman J K, Liu J, Campbell K C, Riffenburgh R H. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.  Laryngoscope. 2002;  112(9) 1515-1532
  • 108 Yamasoba T, Nuttall A L, Harris C, Raphael Y, Miller J M. Role of glutathione in protection against noise-induced hearing loss.  Brain Res. 1998;  784(1 - 2) 82-90
  • 109 Yamasoba T, Schacht J, Shoji F, Miller J M. Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo.  Brain Res. 1999;  815(2) 317-325
  • 110 Ohlemiller K K, McFadden S L, Ding D L, Flood D G, Reaume A G, Hoffman E K, Scott R W, Wright J S, Putcha G V, Salvi R J. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss.  Audiol Neurootol. 1999;  4(5) 237-246
  • 111 Ohlemiller K K, McFadden S L, Ding D L, Lear P M, Ho Y S. Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice.  J Assoc Res Otolaryngol. 2000;  1(3) 243-254
  • 112 Halliwell B, Gutteridge J M. Role of free radicals and catalytic metal ions in human disease: an overview.  Methods Enzymol. 1990;  186 1-85
  • 113 Fessenden J D, Schacht J. The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology.  Hear Res. 1998;  118(1 - 2) 168-176
  • 114 Popa R, Anniko M, Takumida M, Arnold W. Localization of nitric oxide synthase isoforms in the human cochlea.  Acta Otolaryngol. 2001;  121(4) 454-459
  • 115 Shi X, Ren T, Nuttall A L. The electrochemical and fluorescence detection of nitric oxide in the cochlea and its increase following loud sound.  Hear Res. 2002;  164(1 - 2) 49-58
  • 116 Sies H, Sharov V S, Klotz L O, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase.  J Biol Chem. 1997;  272(44) 27 812-27 817
  • 117 Ehrenberger K, Felix D. Receptor pharmacological models for inner ear therapies with emphasis on glutamate receptors: a survey.  Acta Otolaryngol. 1995;  115(2) 236-240
  • 118 Puel J L, Ruel J, Gervais D C, Pujol R. Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss.  Neuroreport. 1998;  9(9) 2109-2114
  • 119 Ehrenberger K, Felix D. Glutamate receptors in afferent cochlear neurotransmission in guinea pigs.  Hear Res. 1991;  52(1) 73-80
  • 120 Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea.  Physiol Rev. 1993;  73(2) 309-373
  • 121 Ruel J, Chen C, Pujol R, Bobbin R P, Puel J L. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig.  J Physiol. 1999;  518 ( Pt 3) 667-680
  • 122 Ruel J, Bobbin R P, Vidal D, Pujol R, Puel J L. The selective AMPA receptor antagonist GYKI 53 784 blocks action potential generation and excitotoxicity in the guinea pig cochlea.  Neuropharmacology. 2000;  39(11) 1959-1973
  • 123 Spoendlin H. The innervation of the organ of Corti.  J Laryngol Otol. 1967;  81(7) 717-738
  • 124 Spoendlin H. Anatomy of cochlear innervation.  Am J Otolaryngol. 1985;  6(6) 453-467
  • 125 Puel J L. Chemical synaptic transmission in the cochlea.  Prog Neurobiol. 1995;  47(6) 449-476
  • 126 Oestreicher E, Arnold W, Ehrenberger K, Felix D. New approaches for inner ear therapy with glutamate antagonists.  Acta Otolaryngol. 1999;  119(2) 174-178
  • 127 Matsubara A, Laake J H, Davanger S, Usami S, Ottersen O P. Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti.  J Neurosci. 1996;  16(14) 4457-4467
  • 128 Niedzielski A S, Safieddine S, Wenthold R J. Molecular analysis of excitatory amino acid receptor expression in the cochlea.  Audiol Neurootol. 1997;  2(1 - 2) 79-91
  • 129 Ryan A F, Brumm D, Kraft M. Occurrence and distribution of non-NMDA glutamate receptor mRNAs in the cochlea.  Neuroreport. 1991;  2(11) 643-646
  • 130 Safieddine S, Eybalin M. Triple immunofluorescence evidence for the coexistence of acetylcholine, enkephalins and calcitonin gene-related peptide within efferent (olivocochlear) neurons of rats and guinea-pigs.  Eur J Neurosci. 1992;  4(10) 981-992
  • 131 Usami S, Matsubara A, Fujita S, Shinkawa H, Hayashi M. NMDA (NMDAR1) and AMPA-type (GluR2/3) receptor subunits are expressed in the inner ear.  Neuroreport. 1995;  6(8) 1161-1164
  • 132 Choi D W. Excitotoxic cell death.  J Neurobiol. 1992;  23(9) 1261-1276
  • 133 Puel J L, Ruel J, Gervais D C, Pujol R. Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss.  Neuroreport. 1998;  9(9) 2109-2114
  • 134 Dudel J. Erregungsübertragung von Zelle zu Zelle. In: Schmidt RF, Tews G (Hrsg) Physiologie des Menschen. Heidelberg; Springer-Verlag 1997: 43-66
  • 135 Choi D W, Rothman S M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.  Annu Rev Neurosci. 1990;  13 171-182
  • 136 Hu B H, Guo W, Wang P Y, Henderson D, Jiang S C. Intense noise-induced apoptosis in hair cells of guinea pig cochleae.  Acta Otolaryngol. 2000;  120(1) 19-24
  • 137 Nicotera T M, Hu B H, Henderson D. The caspase pathway in noise-induced apoptosis of the chinchilla cochlea.  J Assoc Res Otolaryngol. 2003;  4(4) 466-477
  • 138 Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death.  Am J Pathol. 1995;  146(1) 3-15
  • 139 Reed J C. Mechanisms of apoptosis.  Am J Pathol. 2000;  157(5) 1415-1430
  • 140 Ashe P C, Berry M D. Apoptotic signaling cascades.  Prog Neuropsychopharmacol Biol Psychiatry. 2003;  27(2) 199-214
  • 141 Chen M, Wang J. Initiator caspases in apoptosis signaling pathways.  Apoptosis. 2002;  7(4) 313-319
  • 142 Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death?.  J Cell Sci. 2002;  115(Pt 24) 4727-4734
  • 143 Hu B H, Henderson D, Nicotera T M. Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise.  Hear Res. 2002;  166(1 - 2) 62-71
  • 144 Davis R J. Signal transduction by the JNK group of MAP kinases.  Cell. 2000;  103(2) 239-252
  • 145 Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto A M, Walton K M, Ylikoski J. Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation.  J Neurosci. 2000;  20(1) 43-50
  • 146 Cody A R, Robertson D. Variability of noise-induced damage in the guinea pig cochlea: electrophysiological and morphological correlates after strictly controlled exposures.  Hear Res. 1983;  9(1) 55-70
  • 147 Henderson D, Subramaniam M, Boettcher F A. Individual susceptibility to noise-induced hearing loss: an old topic revisited.  Ear Hear. 1993;  14(3) 152-168
  • 148 Ward W D. The concept of susceptibility to hearing loss.  J Occup Med. 1965;  7(12) 595-607
  • 149 Chon K M, Roh H J, Goh E K, Wang S G. Noise induced hearing loss and the individual susceptibility to the noise.  Int Tinnitus J. 1996;  2 73-82
  • 150 Jerger J, Carhart R. Temporary threshold shift as an index of noise susceptibility.  J Acoust Soc Am. 1956;  28 611-613
  • 151 Plinkert P K, Hemmert W, Wagner W, Just K, Zenner H P. Monitoring noise susceptibility: sensitivity of otoacoustic emissions and subjective audiometry.  Br J Audiol. 1999;  33(6) 367-382
  • 152 Puel J L, Rebillard G. Effect of contralateral sound stimulation on the distortion product 2F1-F2: evidence that the medial efferent system is involved.  J Acoust Soc Am. 1990;  87(4) 1630-1635
  • 153 Guinan J J, Backus B C, Lilaonitkul W, Aharonson V. Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs.  J Assoc Res Otolaryngol. 2003;  4(4) 521-540
  • 154 Maison S F, Liberman M C. Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength.  J Neurosci. 2000;  20(12) 4701-4707
  • 155 Venter J C, Adams M D, Myers E W. et al . The sequence of the human genome.  Science. 2001;  291(5507) 1304-1351
  • 156 Haack B, Pfister M, Blin N, Kupka S. Genes involved in hearing impairment.  Curr Genomics. 2003;  4 379-415
  • 157 Davis R R, Cheever M L, Krieg E F, Erway L C. Quantitative measure of genetic differences in susceptibility to noise-induced hearing loss in two strains of mice.  Hear Res. 1999;  134(1 - 2) 9-15
  • 158 Davis R R, Newlander J K, Ling X, Cortopassi G A, Krieg E F, Erway L C. Genetic basis for susceptibility to noise-induced hearing loss in mice.  Hear Res. 2001;  155(1 - 2) 82-90
  • 159 Erway L C, Shiau Y W, Davis R R, Krieg E F. Genetics of age-related hearing loss in mice. III. Susceptibility of inbred and F1 hybrid strains to noise-induced hearing loss.  Hear Res. 1996;  93(1 - 2) 181-187
  • 160 Yoshida N, Hequembourg S J, Atencio C A, Rosowski J J, Liberman M C. Acoustic injury in mice: 129/SvEv is exceptionally resistant to noise-induced hearing loss.  Hear Res. 2000;  141(1 - 2) 97-106
  • 161 Davis R R, Kozel P, Erway L C. Genetic influences in individual susceptibility to noise: a review.  Noise Health. 2003;  5(20) 19-28
  • 162 Moller A R. Auditory neurophysiology.  J Clin Neurophysiol. 1994;  11(3) 284-308
  • 163 Zakrisson J E, Borg E. Stapedius reflex and auditory fatigue.  Audiology. 1974;  13(3) 231-235
  • 164 Warr W B, Guinan J J, Jr. Efferent innervation of the organ of corti: two separate systems.  Brain Res. 1979;  173(1) 152-155
  • 165 Warr W B, Boche J B, Neely S T. Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems.  Hear Res. 1997;  108(1 - 2) 89-111
  • 166 Oestreicher E, Arnold W, Ehrenberger K, Felix D. Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs.  Hear Res. 1997;  107(1 - 2) 46-52
  • 167 Ruel J, Nouvian R, Gervais d C, Pujol R, Eybalin M, Puel J L. Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea.  Eur J Neurosci. 2001;  14(6) 977-986
  • 168 Fuchs P A. The synaptic physiology of cochlear hair cells.  Audiol Neurootol. 2002;  7 40-44
  • 169 Plinkert P K, Gitter A H, Mohler H, Zenner H P. Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells.  Eur Arch Otorhinolaryngol. 1993;  250(6) 351-357
  • 170 Plinkert P K, Zenner H P, Heilbronn E. A nicotinic acetylcholine receptor-like alpha-bungarotoxin-binding site on outer hair cells.  Hear Res. 1991;  53(1) 123-130
  • 171 Elgoyhen A B, Johnson D S, Boulter J, Vetter D E, Heinemann S. Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells.  Cell. 1994;  79(4) 705-715
  • 172 Dallos P, He D Z, Lin X, Sziklai I, Mehta S, Evans B N. Acetylcholine, outer hair cell electromotility, and the cochlear amplifier.  J Neurosci. 1997;  17(6) 2212-2226
  • 173 Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg J P, Fakler B. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells.  Neuron. 2000;  26(3) 595-601
  • 174 Pfaltz R. Einfluss schallgereizter efferenter Hörbahnanteile auf den de-afferentierten Nucleus cochlearis (Meerschweinchen).  Pflügers Arch ges Physiol. 1962;  274 533-552
  • 175 Pfaltz R. Nachweis der akustischen Efferenzen und ihre Wirkung auf die schallaufnehmende Peripherie (Nucleus cochlearis, cochlea).  Arch Ohr Nas Kehlk Heilk. 1962;  180 730
  • 176 Cody A R, Johnstone B M. Temporary threshold shift modified by binaural acoustic stimulation.  Hear Res. 1982;  6(2) 199-205
  • 177 Maffi C L, Aitkin L M. Differential neural projections to regions of the inferior colliculus of the cat responsive to high frequency sounds.  Hear Res. 1987;  26(2) 211-219
  • 178 Pfaltz R, Pirsig W, Sadanaga M. Postsynaptische, auditorische, gekreuzte, efferente Hemmung im Nucleus ventralis und ihre Blockade durch Strychninnitrat (Meerschweinchen).  Arch klin exp Ohr Nas Kehlk Heilk. 1968;  190 60
  • 179 Rajan R, Johnstone B M. Residual effects in monaural temporary threshold shifts to pure tones.  Hear Res. 1983;  12(2) 185-197
  • 180 Vosteen K H. Zur pathologischen Anatomie efferenter Nervenfasern in der Schnecke.  Arch Ohr Nas u Kehlk Heilk. 1968;  181 268-278
  • 181 Ryan A F, Keithley E M, Wang Z X, Schwartz I R. Collaterals from lateral and medial olivocochlear efferent neurons innervate different regions of the cochlear nucleus and adjacent brainstem.  J Comp Neurol. 1990;  300(4) 572-582
  • 182 Liberman M C. The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury.  J Neurophysiol. 1991;  65(1) 123-132
  • 183 el Barbary A, Altschuler R A, Schacht J. Glutathione S-transferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization.  Hear Res. 1993;  71(1 - 2) 80-90
  • 184 Nam Y J, Stover T, Hartman S S, Altschuler R A. Upregulation of glial cell line-derived neurotrophic factor (GDNF) in the rat cochlea following noise.  Hear Res. 2000;  146(1 - 2) 1-6
  • 185 Bibel M, Barde Y A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system.  Genes Dev. 2000;  14(23) 2919-2937
  • 186 Keithley E M, Ma C L, Ryan A F, Louis J C, Magal E. GDNF protects the cochlea against noise damage.  Neuroreport. 1998;  9(10) 2183-2187
  • 187 Fritzsch B, Pirvola U, Ylikoski J. Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications.  Cell Tissue Res. 1999;  295(3) 369-382
  • 188 Staecker H, Kopke R, Malgrange B, Lefebvre P, van de Water T R. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells.  Neuroreport. 1996;  7(4) 889-894
  • 189 Oestreicher E, Knipper M, Arnold A, Zenner H P, Felix D. Neurotrophin 3 potentiates glutamatergic responses of IHC afferents in the cochlea in vivo.  Eur J Neurosci. 2000;  12(5) 1584-1590
  • 190 Schimmang T, Tan J, Muller M, Zimmermann U, Rohbock K, Kopschall I, Limberger A, Minichiello L, Knipper M. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss.  Development. 2003;  130(19) 4741-4750
  • 191 Pickles J O, Chir B. Roles of fibroblast growth factors in the inner ear.  Audiol Neurootol. 2002;  7(1) 36-39
  • 192 Zine A, de Ribaupierre F. Tissue-specific levels and cellular distribution of epidermal growth factor receptors within control and neomycin-damaged neonatal rat organ of corti.  J Neurobiol. 1999;  38(3) 313-322
  • 193 Michel O, Hess A, Bloch W, Schmidt A, Stennert E, Addicks K. Immunohistochemical detection of vascular endothelial growth factor (VEGF) and VEGF receptors Flt-1 and KDR/Flk-1 in the cochlea of guinea pigs.  Hear Res. 2001;  155(1 - 2) 175-180
  • 194 Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.  Annu Rev Genet. 1993;  27 437-496
  • 195 Neely J G, Thompson A M, Gower D J. Detection and localization of heat shock protein 70 in the normal guinea pig cochlea.  Hear Res. 1991;  52(2) 403-406
  • 196 Dechesne C J, Kim H N, Nowak T S Jr, Wenthold R J. Expression of heat shock protein, HSP72, in the guinea pig and rat cochlea after hyperthermia: immunochemical and in situ hybridization analysis.  Hear Res. 1992;  59(2) 195-204
  • 197 Yoshida N, Kristiansen A, Liberman M C. Heat stress and protection from permanent acoustic injury in mice.  J Neurosci. 1999;  19(22) 10 116-10 124
  • 198 Plontke S K, Lifshitz J, Saunders J C. Distribution of rate-intensity function types in chick cochlear nerve after exposure to intense sound.  Brain Res. 1999;  842(1) 262-274
  • 199 Lim H H, Jenkins O H, Myers M W, Miller J M, Altschuler R A. Detection of HSP 72 synthesis after acoustic overstimulation in rat cochlea.  Hear Res. 1993;  69(1 - 2) 146-150
  • 200 Niu X, Shao R, Canlon B. Suppression of apoptosis occurs in the cochlea by sound conditioning.  Neuroreport. 2003;  14(7) 1025-1029
  • 201 Lomax M I, Gong T W, Cho Y, Huang L, Oh S H, Adler H J, Raphael Y, Altschuler R A. Differential gene expression following noise trauma in birds and mammals.  Noise Health. 2001;  3(11) 19-35
  • 202 O'Donovan K J, Tourtellotte W G, Millbrandt J, Baraban J M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience.  Trends Neurosci. 1999;  22(4) 167-173
  • 203 Taggart R T, McFadden S L, Ding D L, Henderson D, Jin X, Sun W, Salvi R. Gene expression changes in chinchilla cochlea from noise-induced temporary threshold shift.  Noise Health. 2001;  3(11) 1-18
  • 204 Jacono A A, Hu B, Kopke R D, Henderson D, van de Water T R, Steinman H M. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla.  Hear Res. 1998;  117(1 - 2) 31-38
  • 205 Sobkowicz H M, August B K, Slapnick S M. Epithelial repair following mechanical injury of the developing organ of Corti in culture: an electron microscopic and autoradiographic study.  Exp Neurol. 1992;  115(1) 44-49
  • 206 Puel J L, Saffiedine S, Gervais D C, Eybalin M, Pujol R. Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea.  C R Acad Sci III. 1995;  318(1) 67-75
  • 207 d'Aldin C G, Ruel J, Assie R, Pujol R, Puel J L. Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea.  Int J Dev Neurosci. 1997;  15(4 - 5) 619-629
  • 208 Puel J L, Ruel J, Guitton M, Wang J, Pujol R. The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies.  Audiol Neurootol. 2002;  7(1) 49-54
  • 209 Lowenheim H, Furness D N, Kil J, Zinn C, Gultig K, Fero M L, Frost D, Gummer A W, Roberts J M, Rubel E W, Hackney C M, Zenner H P. Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti.  Proc Natl Acad Sci U S A. 1999;  96(7) 4084-4088
  • 210 Lowenheim H. Grundlagen der in vivo Regeneration im Kopf-Halsbereich.  Laryngorhinootologie. 2002;  Suppl 1 1-23
  • 211 Corwin J T, Cotanche D A. Regeneration of sensory hair cells after acoustic trauma.  Science. 1988;  240(4860) 1772-1774
  • 212 Cotanche D A. Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma.  Hear Res. 1987;  30(2 - 3) 181-195
  • 213 Cotanche D A. Structural recovery from sound and aminoglycoside damage in the avian cochlea.  Audiol Neurootol. 1999;  4(6) 271-285
  • 214 Ryals B M, Rubel E W. Hair cell regeneration after acoustic trauma in adult Coturnix quail.  Science. 1988;  240(4860) 1774-1776
  • 215 Saunders J C, Doan D E, Poje C P, Fisher K A. Cochlear nerve activity after intense sound exposure in neonatal chicks.  J Neurophysiol. 1996;  76(2) 770-787
  • 216 Smolders J W. Functional recovery in the avian ear after hair cell regeneration.  Audiol Neurootol. 1999;  4(6) 286-302
  • 217 Reng D, Muller M, Smolders J W. Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear.  Audiol Neurootol. 2001;  6(2) 66-78
  • 218 Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.  Science. 1992;  257(5072) 967-971
  • 219 Liang P, Pardee A B. Differential display. A general protocol.  Mol Biotechnol. 1998;  10(3) 261-267
  • 220 Diatchenko L, Lukyanov S, Lau Y F, Siebert P D. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes.  Methods Enzymol. 1999;  303 349-380
  • 221 Robertson N G, Lu L, Heller S, Merchant S N, Eavey R D, McKenna M, Nadol J B Jr, Miyamoto R T, Linthicum F H Jr, Lubianca N eto , Hudspeth A J, Seidman C E, Morton C C, Seidman J G. Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction.  Nat Genet. 1998;  20(3) 299-303
  • 222 Weichbold V, Zorowka P. Der Einfluss der Information über Gehörgefährdung durch laute Musik.  HNO. 2002;  50(6) 560-564
  • 223 Bundesärztekammer . Gehörschäden durch Lärmbelastung in der Freizeit, Stellungnahme des wissenschaftlichen Beirates.  Dt Ärztebl. 1999;  96(16) C760-C763
  • 224 Attias J, Bresloff I, Haupt H, Scheibe F, Ising H. Preventing noise induced otoacoustic emission loss by increasing magnesium (Mg2+) intake in guinea-pigs.  J Basic Clin Physiol Pharmacol. 2003;  14(2) 119-136
  • 225 Joachims Z, Babisch W, Ising H, Gunther T, Handrock M. Dependence of noise-induced hearing loss upon perilymph magnesium concentration.  J Acoust Soc Am. 1983;  74(1) 104-108
  • 226 Haupt H, Scheibe F. Preventive magnesium supplement protects the inner ear against noise-induced impairment of blood flow and oxygenation in the guinea pig.  Magnes Res. 2002;  15(1 - 2) 17-25
  • 227 Scheibe F, Haupt H, Ising H. Preventive effect of magnesium supplement on noise-induced hearing loss in the guinea pig.  Eur Arch Otorhinolaryngol. 2000;  257(1) 10-16
  • 228 Attias J, Weisz G, Almog S, Shahar A, Wiener M, Joachims Z, Netzer A, Ising H, Rebentisch E, Guenther T. Oral magnesium intake reduces permanent hearing loss induced by noise exposure.  Am J Otolaryngol. 1994;  15(1) 26-32
  • 229 Gil-Loyzaga P, Fernandez-Mateos P, Vicente-Torres M A, Remezal M, Cousillas H, Arce A, Esquifino A. Effects of noise stimulation on cochlear dopamine metabolism.  Brain Res. 1993;  623(1) 177-180
  • 230 d'Aldin C, Puel J L, Leducq R, Crambes O, Eybalin M, Pujol R. Effects of a dopaminergic agonist in the guinea pig cochlea.  Hear Res. 1995;  90(1 - 2) 202-211
  • 231 Ehrenberger K. Clinical experience with caroverine in inner ear diseases.  Adv Otorhinolaryngol. 2002;  59 156-162
  • 232 Oestreicher E, Arnold W, Felix D. Neurotransmission of the cochlear inner hair cell synapse-implications for inner ear therapy.  Adv Otorhinolaryngol. 2002;  59 131-139
  • 233 Oestreicher E, Ehrenberger K, Felix D. Different action of memantine and caroverine on glutamatergic transmission in the mammalian cochlea.  Adv Otorhinolaryngol. 2002;  59 18-25
  • 234 Udilova N, Kozlov A V, Bieberschulte W, Frei K, Ehrenberger K, Nohl H. The antioxidant activity of caroverine.  Biochem Pharmacol. 2003;  65(1) 59-65
  • 235 Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury: current state.  Pharmacol Rev. 2002;  54(2) 271-284
  • 236 Reed J C. Apoptosis-based therapies.  Nat Rev Drug Discov. 2002;  1(2) 111-121
  • 237 Manning A M, Davis R J. Targeting JNK for therapeutic benefit: from junk to gold?.  Nat Rev Drug Discov. 2003;  2(7) 554-565
  • 238 Wang J, Van De Water T R, Bonny C, de Ribaupierre F, Puel J L, Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss.  28. J Neurosci. 2003;  23(24) 8596-8607
  • 239 Miller J D, Watson C S, Covell W P. Deafening effects of noise on the cat.  Acta Otolaryngol Suppl. 1963;  176 1-91
  • 240 Niu X, Canlon B. Protective mechanisms of sound conditioning.  Adv Otorhinolaryngol. 2002;  59 96-105
  • 241 Boettcher F A, Schmiedt R A. Distortion-product otoacoustic emissions in Mongolian gerbils with resistance to noise-induced hearing loss.  J Acoust Soc Am. 1995;  98(6) 3215-3222
  • 242 Ryan A F, Bennett T M, Woolf N K, Axelsson A. Protection from noise-induced hearing loss by prior exposure to a nontraumatic stimulus: role of the middle ear muscles.  Hear Res. 1994;  72(1 - 2) 23-28
  • 243 White D R, Boettcher F A, Miles L R, Gratton M A. Effectiveness of intermittent and continuous acoustic stimulation in preventing noise-induced hearing and hair cell loss.  J Acoust Soc Am. 1998;  103(3) 1566-1572
  • 244 Pukkila M, Zhai S, Virkkala J, Pirvola U, Ylikoski J. The „toughening” phenomenon in rat's auditory organ.  Acta Otolaryngol Suppl. 1997;  529 59-62
  • 245 Canlon B, Borg E, Flock A. Protection against noise trauma by pre-exposure to a low level acoustic stimulus.  Hear Res. 1988;  34(2) 197-200
  • 246 Kujawa S G, Liberman M C. Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery.  J Neurophysiol. 1997;  78(6) 3095-3106
  • 247 Miyakita T, Hellstrom P A, Frimanson E, Axelsson A. Effect of low level acoustic stimulation on temporary threshold shift in young humans.  Hear Res. 1992;  60(2) 149-155
  • 248 Boettcher F A. Auditory brain-stem response correlates of resistance to noise-induced hearing loss in Mongolian gerbils.  J Acoust Soc Am. 1993;  94(6) 3207-3214
  • 249 Clark W W, Bohne B A, Boettcher F A. Effect of periodic rest on hearing loss and cochlear damage following exposure to noise.  J Acoust Soc Am. 1987;  82(4) 1253-1264
  • 250 Sinex D G, Clark W W, Bohne B A. Effects of periodic rest on physiological measures of auditory sensitivity following exposure to noise.  J Acoust Soc Am. 1987;  82(4) 1265-1273
  • 251 Campo P, Subramaniam M, Henderson D. The effect of „conditioning” exposures on hearing loss from traumatic exposure.  Hear Res. 1991;  55(2) 195-200
  • 252 Boettcher F A, Spongr V P, Salvi R J. Physiological and histological changes associated with the reduction in threshold shift during interrupted noise exposure.  Hear Res. 1992;  62(2) 217-236
  • 253 Subramaniam M, Henderson D, Campo P, Spongr V. The effect of „conditioning” on hearing loss from a high frequency traumatic exposure.  Hear Res. 1992;  58(1) 57-62
  • 254 Fowler T, Canlon B, Dolan D, Miller J M. The effect of noise trauma following training exposures in the mouse.  Hear Res. 1995;  88(1 - 2) 1-13
  • 255 Yoshida N, Liberman M C. Sound conditioning reduces noise-induced permanent threshold shift in mice.  Hear Res. 2000;  148(1 - 2) 213-219
  • 256 Henderson D, Subramaniam M, Papazian M, Spongr V P. The role of middle ear muscles in the development of resistance to noise induced hearing loss.  Hear Res. 1994;  74(1 - 2) 22-28
  • 257 Dagli S, Canlon B. Protection against noise trauma by sound conditioning in the guinea pig appears not to be mediated by the middle ear muscles.  Neurosci Lett. 1995;  194(1 - 2) 57-60
  • 258 Zheng X Y, Henderson D, McFadden S L, Hu B H. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss.  Hear Res. 1997;  104(1 - 2) 191-203
  • 259 Yamasoba T, Dolan D F, Miller J M. Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses.  Hear Res. 1999;  127(1 - 2) 31-40
  • 260 Yamasoba T, Dolan D F. The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma.  Hear Res. 1998;  120(1 - 2) 143-151
  • 261 Jacono A A, Hu B, Kopke R D, Henderson D, Van De Water T R, Steinman H M. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla.  Hear Res. 1998;  117(1 - 2) 31-38
  • 262 Patuzzi R. A four-state kinetic model of the temporary threshold shift after loud sound based on inactivation of hair cell transduction channels.  Hear Res. 1998;  125(1 - 2) 39-70
  • 263 Patuzzi R. Exponential onset and recovery of temporary threshold shift after loud sound: evidence for long-term inactivation of mechano-electrical transduction channels.  Hear Res. 1998;  125(1 - 2) 17-38
  • 264 Lamm K, Arnold W. How useful is corticosteroid treatment in cochlear disorders?.  Otorhinolaryngol Nova. 1999;  9 203-216
  • 265 Niedermeyer H P, Zahneisen G, Luppa P, Busch R, Arnold W. Cortisol levels in the human perilymph after intravenous administration of prednisolone.  Audiol Neurootol. 2003;  8(6) 316-321
  • 266 Bachmann G, Su J, Zumegen C, Wittekindt C, Michel O. Permeabilität der runden Fenstermembran für Prednisolon-21-Hydrogensuccinat.  HNO. 2001;  49(7) 538-542
  • 267 Parnes L S, Sun A H, Freeman D J. Corticosteroid pharmacokinetics in the inner ear fluids: an animal study followed by clinical application.  Laryngoscope. 1999;  109(7 Pt 2) 1-17
  • 268 Lefebvre P P, Malgrange B, Lallemend F, Staecker H, Moonen G, van de Water T R. Mechanisms of cell death in the injured auditory system: otoprotective strategies.  Audiol Neurootol. 2002;  7(3) 165-170
  • 269 Joachims Z, Netzer A, Ising H, Rebentisch E, Attias J, Weisz G, Gunther T. Oral magnesium supplementation as prophylaxis for noise-induced hearing loss: results of a double blind field study.  Schriftenr Ver Wasser Boden Lufthyg. 1993;  88 503-516
  • 270 Haupt H, Scheibe F, Mazurek B. Therapeutic efficacy of magnesium in acoustic trauma in the guinea pig.  ORL J Otorhinolaryngol Relat Spec. 2003;  65(3) 134-139
  • 271 Scheibe F, Haupt H, Mazurek B, Konig O. Therapeutic effect of magnesium on noise-induced hearing loss.  Noise Health. 2001;  3(11) 79-84
  • 272 Scheibe F, Haupt H, Ising H, Cherny L. Therapeutic effect of parenteral magnesium on noise-induced hearing loss in the guinea pig.  Magnes Res. 2002;  15(1 - 2) 27-36
  • 273 Rebillard G, Ruel J, Nouvian R, Saleh H, Pujol R, Dehnes Y, Raymond J, Puel J L, Devau G. Glutamate transporters in the guinea-pig cochlea: partial mRNA sequences, cellular expression and functional implications.  Eur J Neurosci. 2003;  17(1) 83-92
  • 274 Moser T, Beutner D. Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse.  Proc Natl Acad Sci U S A. 2000;  97(2) 883-888
  • 275 Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels.  Cell. 2000;  102(1) 89-97
  • 276 Engel J, Michna M, Platzer J, Striessnig J. Calcium channels in mouse hair cells: function, properties and pharmacology.  Adv Otorhinolaryngol. 2002;  59 35-41
  • 277 Springer J E, Kitzman P H. Neuroprotective strategies involving the neurotrophins and their signaling pathways. In: Mattson MP (ed) Neuroprotective Signal Transduction. New Jersey; Humana Press 1998: 1-22
  • 278 Keithley E M, Ma C L, Ryan A F, Louis J C, Magal E. GDNF protects the cochlea against noise damage.  Neuroreport. 1998;  9(10) 2183-2187
  • 279 Avraham K B, Raphael Y. Prospects for gene therapy in hearing loss.  J Basic Clin Physiol Pharmacol. 2003;  14(2) 77-83
  • 280 Lalwani A K, Jero J, Mhatre A N. Current issues in cochlear gene transfer.  Audiol Neurootol. 2002;  7(3) 146-151
  • 281 Staecker H, Li D, O'Malley B W Jr, van de Water T R. Gene expression in the mammalian cochlea: a study of multiple vector systems.  Acta Otolaryngol. 2001;  121(2) 157-163
  • 282 Stover T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation.  Hear Res. 1999;  136(1 - 2) 124-130
  • 283 Lange G. 27 years experiences with transtympanic aminoglycoside treatment of Meniere's disease.  Laryngorhinootologie. 1995;  74(12) 720-723
  • 284 Alzamil K S, Linthicum F H, Jr. Extraneous round window membranes and plugs: possible effect on intratympanic therapy.  Ann Otol Rhinol Laryngol. 2000;  109(1) 30-32
  • 285 Plontke S K, Plinkert P K, Plinkert B, Koitschev A, Zenner H P, Lowenheim H. Transtympanic endoscopy for drug delivery to the inner ear using a new microendoscope.  Adv Otorhinolaryngol. 2002;  59 149-155
  • 286 Plontke S K, Wood A W, Salt A N. Analysis of gentamicin kinetics in fluids of the inner ear with round window administration.  Otol Neuro-otol. 2002;  23(6) 967-974
  • 287 Plontke S K, Salt A N. Quantitative interpretation of corticosteroid pharmakokinetics in innner ear fluids using computer simulations.  Hear Res. 2003;  182 34-42
  • 288 Arriaga M A, Goldman S. Hearing results of intratympanic steroid treatment of endolymphatic hydrops.  Laryngoscope. 1998;  108(11 Pt 1) 1682-1685
  • 289 Hoffer M E, Balough B, Henderson J, DeCicco M, Wester D, O'Leary M J, Kopke R. Use of sustained release vehicles in the treatment of Meniere's disease.  Otolaryngol Clin North Am. 1997;  30(6) 1159-1166
  • 290 Thomsen J, Charabi S, Tos M. Preliminary results of a new delivery system for gentamicin to the inner ear in patients with Meniere's disease.  Eur Arch Otorhinolaryngol. 2000;  257(7) 362-365
  • 291 Kopke R D, Hoffer M E, Wester D, O'Leary M J, Jackson R L. Targeted topical steroid therapy in sudden sensorineural hearing loss.  Otol Neurootol. 2001;  22(4) 475-479
  • 292 Lehner R, Brugger H, Maassen M M, Zenner H P. A totally implantable drug delivery system for local therapy of the middle and inner ear.  Ear Nose Throat J. 1997;  76(8) 567-570
  • 293 Praetorius M, Limberger A, Muller M, Lehner R, Schick B, Zenner H P, Plinkert P, Knipper M. A novel microperfusion system for the long-term local supply of drugs to the inner ear: implantation and function in the rat model.  Audiol Neurootol. 2001;  6(5) 250-258
  • 294 Goycoolea M V. Clinical aspects of round window membrane permeability under normal and pathological conditions.  Acta Otolaryngol. 2001;  121(4) 437-447
  • 295 Hoffer M E, Allen K, Kopke R D, Weisskopf P, Gottshall K, Wester D. Transtympanic versus sustained-release administration of gentamicin: kinetics, morphology, and function.  Laryngoscope. 2001;  111(8) 1343-1357
  • 296 Salt A N, Kellner C, Hale S. Contamination of perilymph samples from the basal cochlear fluid with cerebrospinal fluid.  Hear Res. 2003;  182(1 - 2) 24-33
  • 297 Wienke A. The Bonn declaration regarding the future of hearing aid management 7.  HNO. 2002;  50(9) 861-862
  • 298 Zenner H P. Implantable hearing devices: an introduction. In: Jahnke K (ed) Middle Ear Surgery - Recent Advances and Future Directions. Stuttgart, New York; Thieme 2004: 141-160
  • 299 Zenner H P. A Systematic classification of tinnitus generator mechanisms.  Int Tinnitus J. 1998;  4(2) 109-113
  • 300 Zenner H P. Systematics for mechanisms of tinnitus development.  HNO. 1998;  46(8) 699-704
  • 301 Jastreboff P J. Phantom auditory perception (tinnitus): mechanisms of generation and perception.  Neurosci Res. 1990;  8(4) 221-254
  • 302 Jastreboff P J, Hazell J W. A neurophysiological approach to tinnitus: clinical implications.  Br J Audiol. 1993;  27(1) 7-17
  • 303 Zenner H P. Kognitive Tinnitusdesensitivierung - evidenzbasierte und leitliniengerechte Habituationstherapie bei chronischer Tinnitussensitivierung.  HNO. 2003;  51(9) 687-689
  • 304 Zenner H P, Zalaman I. Cognitive tinnitus sensitization - behavioral and neurophysiological aspects of tinnitus centralization.  Acta Otolaryngol,. in press; 
  • 305 Birbaumer N, Schmidt R F. Wachen, Aufmerksamkeit und Schlafen; Lernen und Gedächtnis. In: Schmidt RF, Tews G, (Hrsg) Physiologie des Menschen. Heidelberg, New York; Springer 1997: 141-166
  • 306 Overmier J B. Sensitization, conditioning, and learning: can they help us understand somatization and disability? 12.  Scand J Psychol. 2002;  43(2) 105-112
  • 307 DGHNO Leitlinie . Tinnitus.  AWMF-Leitlin Reg. 1998;  017/064
  • 308 Jastreboff P J, Jastreboff M M. Tinnitus retraining therapy for patients with tinnitus and decreased sound tolerance.  Otolaryngol Clin North Am. 2003;  36(2) 321-336
  • 309 Wilson P H, Henry J L, Andersson G, Hallam R S, Lindberg P. A critical analysis of directive counselling as a component of tinnitus retraining therapy.  Br J Audiol. 1998;  32(5) 273-286
  • 310 Goebel G. Retraining therapy in tinnitus. Paradigm change or old wine in new bottles?.  HNO. 1997;  45(9) 664-667
  • 311 von Wedel H, von Wedel U C. An assessment of tinnitus retraining therapy.  HNO. 2000;  48(12) 887-901
  • 312 Berry J A, Gold S L, Frederick E A, Gray W C, Staecker H. Patient-based outcomes in patients with primary tinnitus undergoing tinnitus retraining therapy.  Arch Otolaryngol Head Neck Surg. 2002;  128(10) 1153-1157
  • 313 Delb W, D'Amelio R, Boisten C J, Plinkert P K. Evaluation of the tinnitus retraining therapy as combined with a cognitive behavioral group therapy.  HNO. 2002;  50(11) 997-1004
  • 314 Wang H, Jiang S, Yang W, Han D. Tinnitus retraining therapy: a clinical control study of 117 patients.  Zhonghua Yi Xue Za Zhi. 2002;  82(21) 1464-1467
  • 315 Kroner-Herwig B, Hebing G, Rijn-Kalkmann U, Frenzel A, Schilkowsky G, Esser G. The management of chronic tinnitus-comparison of a cognitive-behavioural group training with yoga.  J Psychosom Res. 1995;  39(2) 153-165
  • 316 Wise K, Rief W, Goebel G. Meeting the expectations of chronic tinnitus patients: comparison of a structured group therapy program for tinnitus management with a problem-solving group.  J Psychosom Res. 1998;  44(6) 681-685
  • 317 Fechter L, Chen G, Rao D. Noise and occupational exposures. In: Henderson D, Prasher D, Kopke R., Hamernik RP (eds) Noise Induced Hearing Loss: Basic Mechanisms, Prevention and Control. London; NRN publications 2001: 305-318
  • 318 Morata T C, Engel T, Durao A, Costa T R, Krieg E F, Dunn D E, Lozano M A. Hearing loss from combined exposures among petroleum refinery workers.  Scand Audiol. 1997;  26(3) 141-149
  • 319 Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, Kotylo P, Fiszer M, Wesolowski W, Pawlaczyk-Luszczynska M. Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise.  J Occup Environ Med. 2003;  45(1) 15-24
  • 320 Fearn R W. Serial audiometry in young people exposed to loud amplified pop music.  J Sound Vibration. 1981;  74 459-462
  • 321 Clark W W. Noise exposure from leisure activities: a review.  J Acoust Soc Am. 1991;  90(1) 175-181
  • 322 Axelsson A, Jerson T, Lindgren F. Noisy leisure time activities in teenage boys.  Am Ind Hyg Assoc J. 1981;  42(3) 229-233
  • 323 Quirk W S, Shivapuja B G, Schwimmer C L, Seidman M D. Lipid peroxidation inhibitor attenuates noise-induced temporary threshold shifts.  Hear Res. 1994;  74(1 - 2) 217-220
  • 324 Shoji F, Miller A L, Mitchell A, Yamasoba T, Altschuler R A, Miller J M. Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss.  Hear Res. 2000;  146(1 - 2) 134-142
  • 325 Duan M, Agerman K, Ernfors P, Canlon B. Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity.  Proc Natl Acad Sci U S A. 2000;  97(13) 7597-7602
  • 326 Wang J, Dib M, Lenoir M, Vago P, Eybalin M, Hameg A, Pujol R, Puel J L. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig.  Neuroscience. 2002;  111(3) 635-648
  • 327 Chen Z, Ulfendahl M, Ruan R, Tan L, Duan M. Acute treatment of noise trauma with local caroverine application in the guinea pig.  Acta Otolaryngol. 2003;  123(8) 905-909
  • 328 Ohinata Y, Miller J M, Schacht J. Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea.  Brain Res. 2003;  966(2) 265-273
  • 329 Wang J, Ding D, Shulman A, Stracher A, Salvi R J. Leupeptin protects sensory hair cells from acoustic trauma.  Neuroreport. 1999;  10(4) 811-816
  • 330 d'Aldin C, Cherny L, Devriere F, Dancer A. Treatment of acoustic trauma.  Ann N Y Acad Sci. 1999;  884 328-344
  • 331 Lamm K, Arnold W. Successful treatment of noise-induced cochlear ischemia, hypoxia, and hearing loss.  Ann N Y Acad Sci. 1999;  884 233-248
  • 332 Lamm K, Arnold W. The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear.  Hear Res. 2000;  141(1 - 2) 199-219
  • 333 Lomax M I, Gong T W, Cho Y, Huang L, Oh S H, Adler H J, Raphael Y, Altschuler R A. Differential gene expression following noise trauma in birds and mammals. In: Henderson D, Prasher D, Kopke R, Hamernik RP (eds) Noise Induced Hearing Loss: Basic mechanisms, prevention and control. London; NRN publications 2001: 55-71
  • 334 Gong T W, Hegeman A D, Shin J J, Adler H J, Raphael Y, Lomax M I. Identification of genes expressed after noise exposure in the chick basilar papilla.  Hear Res. 1996;  96(1 - 2) 20-32
  • 335 Gong T W, Huang L, Warner S J, Lomax M I. Characterization of the human UBE3B gene: structure, expression, evolution, and alternative splicing small star, filled.  Genomics. 2003;  82(2) 143-152
  • 336 Adler H J, Winnicki R S, Gong T W, Lomax M I. A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein.  Genomics. 1999;  56(1) 59-69
  • 337 Gong T W, Shin J J, Burmeister M, Lomax M I. Complete cDNAs for CDC42 from chicken cochlea and mouse liver.  Biochim Biophys Acta. 1997;  1352(3) 282-292
  • 338 Gong T W, Winnicki R S, Kohrman D C, Lomax M I. A novel mouse kinesin of the UNC-104/KIF1 subfamily encoded by the Kif1b gene.  Gene. 1999;  239(1) 117-127
  • 339 Gong T W, Besirli C G, Lomax M I. MACF1 gene structure: a hybrid of plectin and dystrophin.  Mamm Genome. 2001;  12(11) 852-861
  • 340 Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Haynes B, Dawes M. Levels of Evidence. Oxford Centre for Evidence-based Medicine 2001. http://www.cebm.net/levels_of_evidence
  • 341 Johnstone B M, Patuzzi R, Yates G K. Basilar membrane measurements and the travelling wave.  Hear Res. 1986;  22 147-153
  • 342 von Békésy G. Experiments in Hearing. New York; McGraw-Hill 1960
  • 343 Collet L, Veuillet E, Moulin A, Morlet T, Giraud A L, Micheyl C, Chery-Croze S. Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans.  Br J Audiol. 1994;  28(4 - 5) 213-218

0 Teile der Abschnitte 6.4 und 6.5 wurden mit freundlicher Genehmigung teilweise entnommen aus: Zenner et al. HNO 47, 1999, 236 - 248 [7].

1 Wir danken Dr. H. Löwenheim, Tübingen, für die kritische Durchsicht dieses Kapitels.

Dr. med. Stefan Plontke

Klinik für Hals-, Nasen- und Ohrenheilkunde am Universitätsklinikum Tübingen ·

Elfriede-Aulhorn-Straße 5 · 72076 Tübingen

Email: Stefan.Plontke@uni-tuebingen.de