Abstract
Efficient routes for the gram scale syntheses of optically active chiro - and allo -inositol derivatives from readily available 1,2:4,5-di-O -isopropylidene-myo -inositol (1 ) are described. Both d and l forms of these isomeric inositols could be synthesized from enantiomers of 1 . One-pot methodology for the simultaneous synthesis of both chiro and allo has also been developed. The possible selectivity for the cleavage of trans -ketal in presence of the cis is an added advantage for the syntheses of a variety of protected derivatives for phosphoinositol syntheses. These routes provide synthetically flexible 1,2:4,5-di-O- isopropylidene-chiro -inositol and 1,6:3,4-di-O- isopropylidene-allo -inositol which are difficult to achieve otherwise.
Key words
cyclitols - inositols - regioselectivity - carbohydrates - inhibitors
References
1
Berridge MJ.
Nature (London, U.K.)
1993,
361:
315
2a
Hinchliffe K.
Irvine R.
Nature (London, U.K.)
1997,
390:
123
2b
Phosphoinositides: Chemistry, Biochemistry and Biomedical Applications
ACS Symposium Series 718:
Bruzik KS.
ACS;
Washington DC:
1999.
3
Ferguson MAJ.
Williams AF.
Annu. Rev. Biochem.
1988,
57:
285
4a
Kwon Y.-K.
Lee C.
Chung S.-K.
J. Org. Chem.
2002,
67:
3327
4b
Suzuki T.
Suzuki ST.
Yamada I.
Koashi Y.
Yamada K.
Chida N.
J. Org. Chem.
2002,
67:
2874
4c
Chida N.
Ogawa S.
Chem. Commun.
1997,
807 ; and references cited therein
4d
Suzuki T.
Tanaka S.
Yamada I.
Koashi Y.
Yamada K.
Chida N.
Org. Lett.
2000,
2:
1137
4e
Chida N.
Yoshinaga M.
Tobe T.
Ogawa S.
Chem. Commun.
1997,
1043
5
Sureshan KM.
Shashidhar MS.
Varma AJ.
J. Org. Chem.
2002,
67:
6884 ; and references cited therein
6
Hosoda A.
Miyake Y.
Nomura E.
Taniguchi H.
Chem. Lett.
2003,
32:
1042
7
Akiyama T.
Hara M.
Fuchibe K.
Sakamoto S.
Yamaguchi K.
Chem. Commun.
2003,
1734
8
Sureshan KM.
Gonnade RG.
Shashidhar MS.
Puranik VG.
Bhadbhade MM.
Chem. Commun.
2001,
881
9a
Chiara JL.
Valle N.
Tetrahedron: Asymmetry
1995,
6:
1895
9b
Brammer LE.
Hudlicky T.
Tetrahedron: Asymmetry
1998,
9:
2011
9c
Kornienko A.
d’Alarco M.
Tetrahedron Lett.
1997,
38:
6497
9d
Chung S.-K.
Yu S.-H.
Bioorg. Med. Chem. Lett.
1996,
6:
1461
9e
Berlin WK.
Zhang W.-S.
Shen TY.
Tetrahedron
1991,
47:
1
9f
Jaramillo C.
Chiara J.-L.
Martin-Lomas M.
J. Org. Chem.
1994,
59:
3135
9g
Mandel M.
Hudlicky T.
J. Org. Chem.
1993,
58:
2331
9h
Kornienko A.
Marnera G.
d’Alarco M.
Carbohydr. Res.
1998,
310:
141
9i
Catelani G.
Corsaro A.
d’Andrea F.
Mariani M.
Pistara V.
Bioorg. Med. Chem. Lett.
2002,
12:
3313
9j
Jaramillo C.
Martin-Lomas M.
Tetrahedron Lett.
1991,
32:
2501
9k
Kim KS.
Park J.
Moon HK.
Yi H.
Chem. Commun.
1998,
1945
9l
Carless HAJ.
Busia K.
Oak OZ.
Synlett
1993,
672
9m
Pistara V.
Barili PL.
Catelani G.
Corsaro A.
D’Andrea F.
Fisichella S.
Tetrahedron Lett.
2000,
41:
3253
9n
Mehta G.
Lakshminath S.
Tetrahedron Lett.
2000,
41:
3509
9o
Desjardins M.
Brammer LE.
Hudlicky T.
Carbohydr. Res.
1997,
304:
39
9p
Mandel M.
Hudlicky T.
J. Chem. Soc., Perkin Trans. 1
1993,
741
9q
Hudlicky T.
Restrepo-Sanchez N.
Kary PD.
Jaramillo-Gomez LM.
Carbohydr. Res.
2000,
324:
200
9r
Angyal SJ.
Odier L.
Tate ME.
Carbohydr. Res.
1995,
266:
143
10
Sureshan KM.
Shashidhar MS.
Praveen T.
Das T.
Chem. Rev.
2003,
103:
4477
Although optically active inositol derivatives can be made from sugar derivatives via Ferrier type cyclization, the yield of such C-C coupling is known to vary greatly. Also synthetic steps become too lengthy. But recently an elegant synthesis of all inositol derivatives in optically pure form via Ferrier cyclization followed by stereoselective reduction was reported, see:
11a
Takahashi H.
Kittaka H.
Ikegami S.
J. Org. Chem.
2001,
66:
2705
11b
Takahashi H.
Kittaka H.
Ikegami S.
Tetrahedron Lett.
1998,
39:
9707
12a
Husson C.
Odier L.
Vottero PJA.
Carbohydr. Res.
1998,
307:
163
12b
Lampe D.
Liu C.
Mahon MF.
Potter BVL.
J. Chem. Soc., Perkin Trans. 1
1996,
1717
12c
Lee HW.
Kishi Y.
J. Org. Chem.
1985,
50:
4402
12d
Chung S.-K.
Kwon Y.-U.
Chang Y.-T.
Sohn K.-H.
Shin J.-H.
Park K.-H.
Hong B.-J.
Chung I.-H.
Bioorg. Med. Chem.
1999,
7:
2577
12e
Sarmah MP.
Shashidhar MS.
Carbohydr. Res.
2003,
338:
999
12f
Roemer S.
Stadler C.
Rudolf MT.
Jastorff B.
Schultz C.
J. Chem. Soc., Perkin Trans. 1
1996,
1683
13
Riley AM.
Jenkins DJ.
Potter BVL.
Carbohydr. Res.
1998,
314:
277
14
Angyal SJ.
Hickman RJ.
Carbohydr. Res.
1971,
20:
97
15
Takahashi Y.
Nakayama H.
Katagiri K.
Ichikawa K.
Ito N.
Takita T.
Takeuchi T.
Miyake T.
Tetrahedron Lett.
2001,
42:
1053
16
Cid MB.
Alfonso F.
Martin-Lomas M.
Synlett
2003,
1370
17
Chung S.-K.
Kwon Y.-U.
Bioorg. Med. Chem. Lett.
1999,
9:
2135
18
Kwon Y.-U.
Im J.
Choi G.
Kim Y.-S.
Choi KY.
Chung S.-K.
Bioorg. Med. Chem. Lett.
2003,
13:
2981
19
Sureshan KM.
Yamasaki T.
Hayashi M.
Watanabe Y.
Tetrahedron: Asymmetry
2003,
14:
1771
20 This compound did not melt on heating but charred in the temperature range 110-130 °C.
21
Suri SC.
Rogers SL.
Radhakrishnan KV.
Nair V.
Synth. Commun.
1996,
26:
1031
22 To a solution of diol 1D (260 mg, 1 mmol) and pyridine (2 mL) in CH2 Cl2 (10 mL) was added Tf2 O (255µL, 1.5 mmol) dropwise at -20 °C. The reaction mixture was stirred overnight at r.t. The solvents were evaporated and the residue was dissolved in EtOAc, washed successively with H2 O, cold diluted HCl, sat. aq NaHCO3 and brine, dried (Na2 SO4 ) and evaporated. The crude mixture of 3D and 4D thus obtained was dissolved in DMA (7 mL) and reacted with KOAc (500 mg, 5 mmol) at 70-80 °C for 5 h. DMA was evaporated and usual work-up of the residue followed by column chromatography yielded 5L (124 mg, 41%) and 8D (186 mg, 54%).