Plant Biol (Stuttg) 2004; 6(2): 158-164
DOI: 10.1055/s-2004-815734
Original Paper

Georg Thieme Verlag Stuttgart · New York

The Biophysical Basis of Cell Elongation and Organ Maturation in Coleoptiles of Rye Seedlings: Implications for Shoot Development[1]

U. Kutschera1
  • 1Institut für Biologie, Universität Kassel, Kassel, Germany
Further Information

Publication History

Publication Date:
26 March 2004 (online)

Abstract

The relationships between changes in irreversible and reversible organ length, turgor (P), osmotic pressure (π), and metabolic activity of the cells were investigated in intact coleoptiles of rye seedlings (Secale cereale L.) that were either grown in darkness or irradiated with continuous white light. Cessation of growth at day 4 after sowing was associated with an apparent mechanical stiffening of the cell walls. Turgor pressure was measured in epidermal and mesophyll cells with a miniaturized pressure probe. No gradient of turgor was found between the peripheral and internal cells. In juvenile (growing) coleoptiles, average turgor was 0.60 MPa and a negative water potential (P - π) was established in these cells. Upon emergence of the primary leaf, turgor declined, but P was maintained at values of 0.43 and 0.52 MPa in 7-day-old light- and dark-grown coleoptiles, respectively. Water potential in non-growing cells approached zero. The rate of dark respiration and elongation growth were not correlated. Surgical removal of the mature coleoptile revealed that the erect position of the 7-day-old shoot was dependent on the presence of this sturdy, turgid organ sheath. It is concluded that, during the first week of seedling development, the pierced, metabolically active coleoptile fulfills an essential function as an elastic basal tube for the juvenile shoot.

1 Dedicated to Prof. Dr. P. Schopfer on the occasion of his 65th birthday.

References

  • 1 Brummell D. A., Hall J. L.. Rapid cellular responses to auxin and the regulation of growth.  Plant, Cell Environm.. (1987);  10 523-543
  • 2 Cleland R. E.. The role of hormones in wall loosening and growth.  Austr. J. Plant Physiol.. (1986);  13 93-103
  • 3 Cosgrove D. J.. Biophysical control of plant cell growth.  Annu. Rev. Plant Physiol.. (1986);  37 372-405
  • 4 Cosgrove D. J., Li Z.-C.. Role of expansin in cell enlargement of oat coleoptiles. Analysis of developmental gradients and photocontrol.  Plant Physiol.. (1993);  103 1321-1328
  • 5 Ding B.-L., Schopfer P.. Oxygen dependence of elongation growth and oxygen uptake in maize coleoptiles.  Bot. Acta. (1995);  108 381-386
  • 6 Edelmann H. G.. Wall extensibility during hypocotyl growth: A hypothesis to explain elastic-induced wall loosening.  Physiol. Plant. (1995);  95 296-303
  • 7 Edelmann H. G.. Coleoptiles are gravi-guiding systems vital for gravi-insensitive shoots of germinating grass seedlings.  Planta. (1996);  200 281-282
  • 8 Edelmann H. G., Köhler K.. Auxin increases elastic wall-properties in rye coleoptiles: implications for the mechanism of wall loosening.  Physiol. Plant. (1995);  93 85-92
  • 9 Edelmann H. G., Kutschera U.. Long-term effect of auxin on cell elongation in rye coleoptiles: ultrastructural investigations.  J. Appl. Bot.. (2002);  76 159-162
  • 10 Evans M. L.. The action of auxin on plant cell elongation.  CRC Crit. Rev. Plant Sci.. (1985);  2 307-365
  • 11 Evans M., Ray P. M.. Timing of the auxin response in coleoptiles and its implications regarding auxin action.  J. Gen. Physiol.. (1969);  53 1-20
  • 12 Fröhlich M., Hodick D., Kutschera U.. Thickness and structure of the cell walls in developing rye coleoptiles.  J. Plant Physiol.. (1994);  144 714-719
  • 13 Fröhlich M., Kutschera U.. Changes in soluble sugars and proteins during development of rye coleoptiles.  J. Plant Physiol.. (1995);  146 121-126
  • 14 Heyn A. N. J.. The physiology of cell elongation.  Bot. Rev.. (1940);  6 515-574
  • 15 Hohl M., Schopfer P.. Growth at reduced turgor: irreversible and reversible cell-wall extension of maize coleoptiles and its implications for the theory of cell growth.  Planta. (1992);  187 209-217
  • 16 Hohl M., Greiner H., Schopfer P.. The cryptic-growth response of maize coleoptiles and its relationship to H2O2-dependent cell wall stiffening.  Physiol. Plant. (1995);  94 491-498
  • 17 Hüsken D., Steudle E., Zimmermann U.. Pressure probe technique for measuring water relations of cells in higher plants.  Plant Physiol.. (1978);  61 158-163
  • 18 Inada N., Sakai A., Kuroiwa H., Kuroiwa T.. Three-dimensional progression of programmed death in the rice coleoptile.  Int. Rev. Cytol.. (2002);  218 221-258
  • 19 Kramer P. J., Boyer J. S.. Water Relations of Plants and Soils. London; Academic Press (1995)
  • 20 Kutschera U.. Osmotic relations during elongation growth in hypocotyls of Helianthus annuus L.  Planta. (1991);  184 61-66
  • 21 Kutschera U.. The current status of the acid-growth hypothesis.  New Phytol.. (1994);  126 549-569
  • 22 Kutschera U.. Tissue pressure and cell turgor in stems and coleoptiles: Implications for the organismal theory of multicellularity. J.  Plant Physiol.. (1995);  146 126-132
  • 23 Kutschera U.. Cessation of cell elongation in rye coleoptiles is accompanied by a loss of cell-wall plasticity.  J. Exp. Bot.. (1996);  47 1387-1394
  • 24 Kutschera U.. Fusicoccin-induced growth and dark respiration in rye coleoptiles.  J. Plant Physiol.. (1999);  154 554-556
  • 25 Kutschera U.. Cell expansion in plant development.  Rev. Bras. Fisiol. Veg.. (2000);  12 65-95
  • 26 Kutschera U.. Stem elongation and cell-wall proteins in flowering plants.  Plant Biol.. (2001 a);  3 466-480
  • 27 Kutschera U.. Gravitropism of axial organs in multicellular plants.  Adv. Space Res.. (2001 b);  27 851-860
  • 28 Kutschera U.. Prinzipien der Pflanzenphysiologie. 2. Auflage. Heidelberg, Berlin; Spektrum Akademischer Verlag (2002)
  • 29 Kutschera U.. Auxin-induced cell elongation in grass coleoptiles: a phytohormone in action.  Curr. Topics Plant Biol.. (2003);  4 27-46
  • 30 Kutschera U., Schopfer P.. Evidence against the acid-growth theory of auxin action.  Planta. (1985 a);  163 483-493
  • 31 Kutschera U., Schopfer P.. Evidence for the acid-growth theory of fusicoccin action.  Planta. (1985 b);  163 494-499
  • 32 Kutschera U., Schopfer P.. Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles.  Planta. (1986 a);  167 527-535
  • 33 Kutschera U., Schopfer P.. In-vivo measurement of cell-wall extensibility in maize coleoptiles. Effects of auxin and abscisic acid.  Planta. (1986 b);  169 437-442
  • 34 Kutschera U., Bergfeld R., Schopfer P.. Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles.  Planta. (1987);  170 168-180
  • 35 Kutschera U., Siebert C., Masuda Y., Sievers A.. Effects of submergence on development and gravitropism in the coleoptile of Oryza sativa L.  Planta. (1990);  183 112-199
  • 36 Lockhart J. A.. Cell extension. Bonner, J. and Varner, J. E., eds. Plant Biochemistry. New York, London; Academic Press (1965): 826-849
  • 37 Meshcheryakov A., Steudle E., Komor E.. Gradients of turgor, osmotic pressure, and water potential in the cortex of the hypocotyl of growing Ricinus seedlings.  Plant Physiol.. (1992);  98 840-852
  • 46 Niklas K. J.. Plant Biomechanics: An Engineering Approach to Plant Form and Function. Chicago, London; The University of Chicago Press (1992)
  • 38 Rich T. C. G., Tomos A. D.. Turgor pressure and phototropism in Sinapis alba L. seedlings.  J. Exp. Bot.. (1988);  39 291-299
  • 39 Schopfer P.. Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper.  Plant Physiol.. (1994);  104 1269-1275
  • 40 Schopfer P.. Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles.  Planta. (1996);  199 43-49
  • 41 Schopfer P.. Cell-wall mechanics and extension growth. Spatz, H.-C. and Speck, T., eds. Plant Biomechanics 2000. Stuttgart, New York; G. Thieme (2000): 218-228
  • 42 Schopfer P.. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth.  Plant J.. (2001);  28 679-688
  • 43 Schopfer P., Brennicke A.. Pflanzenphysiologie. 5. Auflage. Berlin, Heidelberg, New York; Springer Verlag (1999)
  • 44 Schopfer P., Liszkay A., Bechtold M., Frahry G., Wagner A.. Evidence that hydroxyl radicals mediate auxin-induced extension growth.  Planta. (2002);  214 821-828
  • 45 Went F. W., Thimann K. V.. Phytohormones. New York; The Macmillan Company (1937)

1 Dedicated to Prof. Dr. P. Schopfer on the occasion of his 65th birthday.

U. Kutschera

Institut für Biologie
Universität Kassel

Heinrich-Plett-Straße 40

34109 Kassel

Germany

Email: kut@uni-kassel.de

Section Editor: G. Thiel