Semin Plast Surg 2003; 17(4): 409-416
DOI: 10.1055/s-2004-817714
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Advances in Head and Neck Reconstruction: Applications of Tissue Engineering

Gregory R.D. Evans
  • The Aesthetic and Plastic Surgery Institute, The University of California, Irvine, Orange, CA
Further Information

Publication History

Publication Date:
13 April 2004 (online)

ABSTRACT

The interdisciplinary field of tissue engineering is growing. During the late 1980s and 1990s the field saw unprecedented growth with the lure of marketable products and media attention. But where have we come? Are we at a point where clinical products for the head and neck are available? Has the field advanced to our expectations? This article attempts to focus on these issues specifically for the head and neck. Tissue types and currently limitations are reviewed.

REFERENCES

  • 1 Fuchs J R, Nasseri B A, Vacanti J P. Tissue engineering: a 21st century solution to surgical reconstruction.  Ann Thorac Surg . 2001;  72 577-591
  • 2 Walgenbach K J, Voigt M, Riabikhin A W. et al . Tissue engineering in plastic reconstructive surgery.  Anat Rec . 2001;  263 372-378
  • 3 Lysagth M J, Reyes J. The growth of tissue engineering.  Tissue Eng . 2001;  7 485-524
  • 4 Yang S, Leong K, Du Z, Chua C. The design of scaffolds for use in tissue engineering. Part I. Traditional factors.  Tissue Eng . 2001;  7 679-689
  • 5 Naughton G K. From lab bench to market: critical issues in tissue engineering.  Ann N Y Acad Sci . 2002;  961 372-385
  • 6 Whitaker M J, Quirk R A, Howdle S M, Shakesheff K M. Growth factor release from tissue engineering scaffolds.  J Pharm Pharmacol . 2001;  53 1427-1437
  • 7 Cassell O C, Morrison W A, Messina A. et al . The influence of extracellular matrix on the generation of vascularized, engineered transplantable tissue.  Ann N Y Acad Sci . 2001;  944 429-442
  • 8 Stock U A, Vacanti J P, Mayer J E, Wahlers T. Tissue engineering of heart valves-current aspects.  Thorac Cardiovasc Surg . 2002;  50 184-193
  • 9 Rose F RA, Oreffo R OC. Bone tissue engineering: hope versus hype.  Biochem Biophys Res Commun . 2002;  292 1-7
  • 10 Cassell O C, Morrison W A, Messina A. et al . The influence of extracellular matrix on the generation of vascularized, engineered transplantable tissue.  Ann N Y Acad Sci . 2001;  944 429-442
  • 11 Ballas C B, Zielske S P, Gerson S L. Adult bone marrow stem cells for cell and gene therapies: implications for greater use.  J Cell Biochem Suppl . 2002;  38 20-28
  • 12 Howdle S M, Watson M S, Whitaker M J. et al . Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials.  Chem Commun . 2001;  109-110
  • 13 Luyten F P, Dell'Accio F, De Bari C. Skeletal tissue engineering: opportunities and challenges.  Best Pract Res Clin Rheumatol . 2001;  15 759-769
  • 14 Pei M, Seidel J, Vunjak-Novakovic G, Freed L. E: Growth factors for sequential cellular de and re-differentiation in tissue engineering.  Biochem Biophys Res Commun . 2002;  294 149-154
  • 15 Breitbart A S, Grande D A, Mason J M, Barcia M, James T, Grant R T. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene.  Ann Plast Surg . 1999;  42 488-495
  • 16 Badylak S F. In vivo studies to evaluate tissue engineering techniques.  Ann N Y Acad Sci . 2002;  961 302-304
  • 17 Bianco P, Robey P G. Stem cells in tissue engineering.  Nature . 2001;  414 118-121
  • 18 Musgrave D S, Bosch P, Ghivizzani S, Robbins P D, Evans C H, Huard J. Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone.  Bone . 1999;  24 541-547
  • 19 Goldstein S A. Tissue engineering: functional assessment and clinical outcome.  Ann N Y Acad Sci . 2002;  961 183-192
  • 20 Andriano K P, Tabata Y, Ikada Y, Heller J. In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering.  J Biomed Mater Res . 1999;  48 602-612
  • 21 Lee W P. What's new in plastic surgery.  J Am Coll Surg . 2002;  194 324-334
  • 22 Peterson L, Minas T, Brittberg M. et al . Two to 9-year outcome after autologous chondrocyte transplantation of the knee.  Clin Orthop . 2000;  374 212-234
  • 23 Griffith L G, Naughton G. Tissue engineering-current challenges and expanding opportunities.  Science . 2002;  295 1009-1014
  • 24 Takimoto Y, Nakamura T, Yamamoto Y, Kiyotani T, Teramachi M, Shimizu Y. The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent.  J Thorac Cardiovasc Surg . 1998;  116 98-106
  • 25 Sato M, Ando N, Ozawa S, Miki H, Kitajima M. An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen.  ASAIO J . 1994;  40 M389-M392
  • 26 Delaere P R, Liu Z, Sciot R, Welvaart W. The role of immunosuppression in the long term survival of tracheal allografts.  Arch Otolaryngol Head Neck Surg . 1996;  122 1201-1208
  • 27 Grillo H C. Tracheal replacement: a critical review.  Ann Thorac Surg . 2002;  73 1995-2004
  • 28 Lalan S, Pomerantseva I, Vancanti J P. Tissue engineering and its potential impact on surgery.  World J Surg . 2001;  25 1458-1466
  • 29 Shum-Tim D, Stock U, Hrkach J. et al . Tissue engineering of autologous aorta using a new biodegradable polymer.  Ann Thorac Surg . 1999;  68 2298-2305
  • 30 L'Heureux N, Paquet S, Labbe R, Geramin L, Auger F A. A complete, biological tissue engineered human blood vessel.  FASEB J . 1998;  12 47-56
  • 31 Shin'Oka T, Imai I, Ikada Y. Transplantation of a tissue engineered pulmonary artery.  N Engl J Med . 2001;  344 532-533
  • 32 Kaihara S, Borenstein J, Koka R. et al . Silicon micromachining to tissue engineer branched vascular channels for liver fabrication.  Tissue Eng . 2000;  6 105-117
  • 33 Ferrara G. Nuova Selva di Chirurgia Divisiain tre Parti Venice. S Combi; 1608
  • 34 Glück T. Ueber Neuroplastik auf dem Wege der Transplantation.  Arch Klin Chir . 1880;  25 606-616
  • 35 Millesi H, Ganglberger J, Berger A. Erfharungen mit der Mikrochirurgie peripherer Nerven.  Chir Plast . 1967;  34 47
  • 36 Millesi H. Peripheral nerve surgery today: turning point or continuous development?.  J Hand Surg [Br] . 1990;  15 281-287
  • 37 Millesi H. Progress in peripheral nerve reconstruction.  World J Surg . 1990;  14 733-747
  • 38 Hudson R, Evans G RD, Schmidt C. Engineering strategies for peripheral nerve repair. In: Edington H, ed. Clinics Plastic Surgery 4 1999;617-628. Reprinted in Land J, ed. Orthopaedic Clinics of North America. Vol 31. Philadelphia: WB Saunders; 2000: 485-497
  • 39 DeLustro F, Dasch J, Keefe J. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives.  Clin Orthop . 1990;  260 263-279
  • 40 Evans G RD. Peripheral nerve injury: a review and approach to tissue engineered constructs.  Anat Rec . 2001;  263 396-404
  • 41 Martini R. Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerve.  J Neurocytol . 1994;  23 1-28
  • 42 Tonge D A, Golding J P. Regeneration and repair of the peripheral nervous system.  Semin Neurosci . 1993;  5 385-390
  • 43 Woerly S, Plant G W, Harvey A R. Neural tissue engineering: from polymer to biohybrid organs.  Biomaterials . 1996;  17 301-310
  • 44 Levi A DO, Guenard V, Aebischer P, Bunge R P. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve.  J Neurosci . 1994;  14 1309-1319
  • 45 Madison R D. Point sources of Schwann cells result in growth into nerve entubulation repair site in the absence of axons: effects of freeze-thawing.  Exp Neurol . 1994;  128 266-275
  • 46 De Vries G H. Schwann cell proliferation. In: Dyck PJ, Thomas PK, eds. Peripheral Neuropathy Philadelphia: WB Saunders 1993: 290-298
  • 47 Rath E M, Kelly D, Bouldin T W, Popko B. Impaired peripheral nerve regeneration in a mutant strain of mice (Enr) with a Schwann cell defect.  J Neurosci . 1995;  15 7226-7237
  • 48 Hadlock T, Elisseeff J, Langer R, Vacanti J, Cheney M. A tissue-engineered conduit for peripheral nerve repair.  Arch Otolaryngol Head Neck Surg . 1998;  124 1081-1086
  • 49 Zhang Y, Campbell G, Anderson P N, Martini R, Schachner M, Lieberman A R. Molecular basis of interactions between regenerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts II: tenascin-c.  J Comp Neurol . 1995;  361 210-224
  • 50 Zhang Y, Campbell G, Anderson P N, Martini R, Schachner M, Lieberman A R. Molecular basis of interactions between regenerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts I: neural cell adhesion molecules.  J Comp Neurol . 1995;  361 193-209
  • 51 Terenghi G. Peripheral nerve injury and regeneration.  Histol Histopathol . 1995;  10 709-718
  • 52 Brown R E, Erdmann D, Lyons S F. et al . The use of cultured Schwann cells in nerve repair in a rabbit hind-limb model.  J Reconstr Microsurg . 1996;  12 149-152
  • 53 Levi A DO, Guenard V, Aebischer P. et al . The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve.  J Neurosci . 1994;  14 1309-1319
  • 54 Guenard V, Kleitman N, Morrissey T K. et al . Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration.  J Neurosci . 1992;  12 3310-3320
  • 55 Osawa T, Tohyama K, Ide C. Allogeneic nerve grafts in the rat, with special reference to the role of Schwann cells basal laminae in nerve regeneration.  J Neurocytol . 1990;  19 833-849
  • 56 Evans G RD, Brandt K, Katz S. et al . Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration.  Biomaterials . 2002;  23 841-848
  • 57 Fujimoto E, Mizoguchi A, Hanada K, Yajima M, Ide C. Basic fibroblast growth factor promotes extension of regenerating axons of peripheral nerve: In vivo experiments using a Schwann cell basal lamina tube model.  J Neurocytol . 1997;  26 511-528
  • 58 Sterne G D, Brown R A, Green C J, Terenghi G. Neurotrophin-3 delivered locally via fibronectin mats enhances peripheral nerve regeneration.  Eur J Neurosci . 1997;  9 1388-1396
  • 59 Reichert F, Levitzky R, Rotzhenker S. Interleukin 6 in intact and injured mouse peripheral nerves.  Eur J Neurosci . 1996;  8 530-535
  • 60 Fu S Y, Gordon T. The cellular and molecular basis of peripheral nerve regeneration.  Mol Neurobiol . 1997;  14 67-116
  • 61 Sjoberg J, Kanje M. Insulin-like growth factor (IGF-I) as a stimulator of regeneration in the freeze-injured rat sciatic nerve.  Brain Res . 1989;  485 102-108
  • 62 DiStefano P S, Friedman B, Radziejewski C. et al . The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons.  Neuron . 1992;  8 983-993
  • 63 Griffin C C, Letourneau P C. Rapid retraction of neurites by sensory neurons in response to increased concentrations of nerve growth factor.  J Cell Biol . 1980;  86 156-161
  • 64 Kaechi K, Ikegami R, Nakamura N, Nakajima M, Furukawa Y, Furukawa S. 4-Methylcatechol, an inducer of nerve growth factor synthesis, enhances peripheral nerve regeneration across nerve gaps.  J Pharmacol Exp Ther . 1995;  272(3) 1300-1304
  • 65 Yip H K, Rich K M, Lampe P A, Johnson Jr M E. The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in the rat dorsal root ganglia.  J Neurosci . 1984;  4 2986-2992
  • 66 Otto D, Unsicker K, Grothe C. Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult dorsal root ganglia.  Neurosci Lett . 1987;  83 156-160
  • 67 Rich K M, Luszcynski J R, Osborne P A, Johnson Jr M E. Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury.  J Neurocytol . 1987;  16 261-268
  • 68 Melville S, Sherburn T E, Coggeshall R E. Preservation of sensory cells by placing stumps of transected nerve in an impermeable tube.  Exp Neurol . 1989;  105 311-315
  • 69 Anton E S, Weskamp G, Reichardt L F, Matthew W D. Nerve growth factor and its low-affinity receptor promote Schwann cell migration.  Proc Natl Acad Sci USA . 1994;  91 2795-2799
  • 70 Friedlander D R, Grumet M, Edleman G M. Nerve growth factor enhances expression of neuron-glia cell adhesion molecule in PC 12 cells.  J Cell Biol . 1986;  102 413-419
  • 71 Whitaker M J, Quirk R A, Howdle S M, Shakesheff K M. Growth factor release from tissue engineering scaffolds.  J Pharm Pharmacol . 2001;  53 1427-1437
  • 72 Rose F RA, Oreffo R OC. Bone tissue engineering: hope vs.  hype. Biochem Biophys Res Commun . 2002;  292 1-7
  • 73 Howdle S M, Watson M S, Whitaker M J. et al . Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials.  Chem Commun . 2001;  109-110
  • 74 Pei M, Seidel J, Vunjak-Novakovic G, Freed L E. Growth factors for sequential cellular de and re-differentiation in tissue engineering.  Biochem Biophys Res Commun . 2002;  294 149-154
  • 75 Jimenez J C, Tyson D R, Dhar S. et al . Human embryonic kidney cells (HEK-293): characterization and dose response for modulated release of NGF for nerve regeneration (in press).  Plast Reconstr Surg 2003.
  • 76 Today USA Section B Monday February 24, 2003 page 1. 
    >