References
1a
O’Donnell MI. In
Catalytic Asymmetric Synthesis, Asymmetric Phase-Transfer Reactions
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
p.727
1b
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
p.241
2a
Stoddart JF.
Top. Stereochem.
1987,
17:
207
2b
Miethchen R.
Fehring V.
Synthesis
1998,
94 ; and references cited therein
3
Bakó P.
Czinege E.
Bakó T.
Czugler M.
Tőke L.
Tetrahedron: Asymmetry
1999,
10:
4539 ; and references cited therein
4a
Novák T.
Tatai J.
Bakó P.
Czugler M.
Keglevich Gy.
Tőke L.
Synlett
2001,
424
4b
Bakó T.
Bakó P.
Szöllősy Á.
Czugler M.
Keglevich Gy.
Tőke L.
Tetrahedron: Asymmetry
2002,
13:
203
For recent review, see:
5a
Porter MJ.
Roberts SM.
Skidmore J.
Bioorg. Med. Chem.
1999,
7:
2145
5b
Banfi S.
Colonna S.
Molinari H.
Juliá S.
Guixer J.
Tetrahedron
1984,
40:
5207
5c
Lygo B.
Wainwright PG.
Tetrahedron
1999,
55:
6289
5d
Corey EJ.
Zhang F.-Y.
Org. Lett.
1999,
1:
1287
5e
Arai S.
Tsuge H.
Shioiri T.
Tetrahedron Lett.
1998,
39:
7563
5f
Enders D.
Zhu J.
Raabe G.
Angew. Chem., Int. Ed. Engl.
1996,
35:
1725
5g
Enders D.
Kramps L.
Zhu J.
Tetrahedron: Asymmetry
1998,
9:
3959
5h
Yamada K.
Arai T.
Sasai H.
Shibasaki M.
J. Org. Chem.
1998,
63:
3666
5i
Watanabe S.
Arai T.
Sasai H.
Bougauchi M.
Shibasaki M.
J. Org. Chem.
1998,
63:
8090
6
Bakó P.
Tőke L.
J. Incl. Phenom.
1995,
23:
195
7
Di Cesare P.
Gross B.
Synth. Commun.
1979,
4581
8
Marsman B.
Wynberg H.
J. Org. Chem.
1979,
44:
2312
9
Washington I.
Houk KN.
Org. Lett.
2002,
4:
2661
10
Juliá S.
Guixer J.
Masana J.
Rocas J.
Colonna S.
Annuziata R.
J. Chem. Soc., Perkin Trans. 1
1982,
1317
11 Selected data for 5: [α]D
20 +18.0 (c = 1, CHCl3). 1H NMR:
δ = 7.47 (d, 2 H, ArH), 7.36 (t, 3 H, ArH), 5.59 (s, 1 H, benzylidene-CH), 4.78 (s, 1 H, anomer-H), 4.24 (q, J = 10.1 Hz, 1 H, H-6), 4.06 (t, J = 9.6 Hz, 1 H, H-6), 3.66-4.00 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.38 (s, 3 H, OCH3), 3.26 (t, 2 H, CH2I), 3.18 (t, 2 H, CH2I). For 2a: [α]D
20 +16.0 (c = 1, CHCl3). 1H NMR: δ = 7.48 (d, 2 H, ArH), 7.35 (t, 3 H, ArH), 5.30 (s, 1 H, benzylidene-CH), 4.75 (s, 1 H, anomer-H), 4.24 (q, J = 10.1 Hz, 1 H, H-6), 4.11 (t, J = 9.6 Hz, 1 H, H-6), 3.55-3.98 (m, 18 H, OCH2, H-2, H-3, H-4, H-5), 3.37 (s, 3 H, OCH3), 2.78 (t, 6 H, CH2N). FAB-MS: 484 [M+ + H], 506 [M+ + Na]. For 2b: [α]D
20 +15.0 (c = 1, CHCl3). FAB-MS: 498 [M+ + H], 520 [M+ + Na]. For 2c: [α]D
20 +19.6 (c = 1, CHCl3). 1H NMR: δ = 7.39 (d, 2 H, ArH), 7.27 (t, 3 H, ArH), 5.52 (s, 1 H, benzylidene-CH), 4.67 (s, 1 H, anomer-H), 4.16 (q, J = 10.1 Hz, 1 H, H-6), 4.02 (t, J = 9.6 Hz, 1 H, H-6), 3.45-3.95 (m, 18 H, OCH2, H-2, H-3, H-4, H-5), 3.31 (s, 3 H, OCH3), 3.24 (t, 3 H, OCH3), 2.72 (t, 4 H, CH2N), 2.56 (t, 2 H, CH2N), 1.69 (m, 2 H, CH2). FAB-MS: 512 [M+ + H], 534 [M+ + Na]. For 2d: [α]D
20 +18.8 (c = 1, CHCl3). 1H NMR: δ = 7.71 (d, 2 H, tosyl-ArH), 7.49 (d, 2 H, tosyl-ArH), 7.38 (d, 2 H, ArH), 7.32 (t, 3 H, ArH), 5.62 (s, 1 H, benzylidene-CH), 4.74 (s, 1 H, anomer-H), 4.26 (q, J = 10.1 Hz, 1 H, H-6), 4.12 (t, J = 9.6 Hz, 1 H, H-6), 3.51-4.00 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.40 (s, 3 H, OCH3), 3.20-3.26 (m, 4 H, CH2N), 2.44 (s, 3 H, CH3). FAB-MS: 594 [M+ + H], 616 [M+ + Na]. For 2e: [α]D
20 +26.3 (c = 1, CHCl3). 1H NMR: δ = 7.47 (d, 2 H, ArH), 7.35 (t, 3 H, ArH), 5.60 (s, 1 H, benzylidene-CH), 4.78 (s, 1 H, anomer-H), 4.25 (q, J = 10.1 Hz, 1 H, H-6), 4.14 (t, J = 9.6 Hz, 1 H, H-6), 3.55-4.08 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.39 (s, 3 H, OCH3), 2.85 (t, 2 H, CH2N), 2.76 (t, 2 H, CH2N), 2.55 (m, 1 H, NH). FAB-MS: 440 [M+ + H], 462 [M+ + Na].
12 General Procedure for the Epoxidation of Chalcones: Chalcone (1.44 mmol) and the crown ether (0.1 mmol) were dissolved in 3 mL of toluene and 1 mL of 20% aq NaOH was added maintaining the temperature at 5 °C with ice water. Then 0.5 mL of tert-butylhydroperoxide (5.5 M decane solution, 2.88 mmol) was added and the mixture stirred at 5 °C. After completing the reaction (1-48 h), a mixture of 7 mL of toluene and 10 mL of water was added. The organic phase was dried (Na2SO4) and concentrated in vacuo. The crude product was purified on silica gel by preparative TLC with hexane-EtOAc (10:1) as eluent, for 7a [α]D = -196 (c = 1, CH2Cl2, 20 °C) with 92% ee (lit., [α]D -214 for the pure enantiomer);
[10]
mp 64-66 °C (EtOH). 1H NMR (CDCl3): δ = 8.02 (d, 2 H, o-COPh-H), 7.63 (t, 1 H, p-COPh-H), 7.50 (t, 2 H, m-COPh-H), 7.38-7.44 (m, 5 H, CHPh-H), 4.30 (d, J = 1.9 Hz, 1 H, COCH), 4.09 (d, J = 1.9 Hz, 1 H, PhCH). For 7c: [α]D = -167.9 (c = 1, CH2Cl2, 20 °C) with 82% ee; mp 81 °C (EtOH). 1H NMR: δ = 8.01 (d, 2 H, o-COPh-H), 7.39 (m, 5 H, CHPh-H), 6.95 (d, 2 H, m-COPh-H), 4.25 (d, J = 1.7 Hz, 1 H, COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH), 3.87 (s, 3 H, OCH3). For 7d: [α]D = -156.1 (c = 1, CH2Cl2, 20 °C) with 80% ee; mp 121 °C (EtOH). 1H NMR: δ = 7.96 (d, 2 H, o-COPh-H), 7.46 (d, 2 H, m-COPh-H), 7.40 (t, 3 H, m,p-CHPh-H), 7.36 (d, 2 H, o-CHPh-H), 4.23 (d, J = 1.6 Hz, 1 H, COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH).