Subscribe to RSS
DOI: 10.1055/s-2004-817759
An Effective Sialylation Method Using N-Troc- and N-Fmoc-protected β-Thiophenyl Sialosides and Application to the One-pot Two-step Synthesis of 2,6-Sialyl-T Antigen
Publication History
Publication Date:
10 February 2004 (online)
Abstract
We describe an efficient sialylation method using β-thiosialosides with various N-protecting groups. Modification of the C-5 amino group of β-thiosialosides into N-Fmoc and N-Troc derivatives enhanced their reactivity in glycosidation. In addition, a minimum amount of MS-3 Å was effective to improve the yield of α-linked sialoside. Branched type one-pot glycosylation initiating glycosidation of the N-Troc-protected β-thiophenyl sialoside at a primary alcohol provided the protected 2,6-sialyl-T antigen in good yield, which was converted to the fully deprotected glycosyl amino acid.
Key words
sialic acids - one-pot glycosylation - glycopeptides - glycosyl amino acids - thioglycosides
-
1a
Gottschalk A. Nature (London, U. K.) 1951, 167: 845 -
1b
Sialic Acids: Chemistry, Methabolism and Function
Vol. 10:
Schauer R. Springer-Verlag; Wien-New York: 1982. -
1c
Suzuki Y.Nagano Y.Kato H.Matsumoto M.Nerome K.Nakajima K.Nobusaka E. J. Biol. Chem. 1986, 261: 17057 -
1d
Varki A. Glycobiology 1993, 3: 97 -
1e
Biology of Sialic Acids
Rosenberg A. Plenum Press; New York, London: 1995. -
1f
Angata T.Varki A. Chem. Rev. 2002, 102: 439 -
2a
Fukuda M.Carlsson SR.Klock JC.Dell A. J. Biol. Chem. 1986, 261: 12796 -
2b
Hull SR.Bright A.Carraway KL.Abe M.Hayes DF.Kufe DW. Cancer Commun. 1989, 1: 261 -
2c
Saitoh O.Gallagher RE.Fukuda M. Cancer Res. 1991, 51: 2854 -
3a
Kurosawa A.Kitagawa H.Fukui S.Numata Y.Nakada H.Funakoshi I.Kawasaki T.Ogawa T.Iijima H.Yamashita I. J. Biol. Chem. 1988, 263: 8724 -
3b
Itzkowitz SH.Yuan M.Montgomery CK.Kjeldsen T.Takahashi HK.Bigbee WL.Kim YS. Cancer Res. 1989, 49: 197 -
3c
Toyokuni T.Singhal AK. Chem. Soc. Rev. 1995, 24: 137 - For recent review of glycopeptide synthesis, see:
-
4a
Meldal M.St Hilaire PM. Curr. Opin. Chem. Biol. 1997, 1: 552 -
4b
Herzner H.Reipen T.Schultz M.Kunz H. Chem. Rev. 2000, 100: 4495 -
4c
St Hilaire PM.Meldal M. Angew. Chem. Int. Ed. 2000, 39: 1162 -
4d
Macmillan D.Bertozzi CR. Tetrahedron 2000, 56: 9515 -
4e
Seitz O. ChemBioChem 2000, 1: 214 -
4f
Seitz O.Heinemann I.Mattes A.Waldmann H. Tetrahedron 2001, 57: 2247 -
4g
Davis BG. Chem. Rev. 2002, 102: 579 -
4h
Brocke C.Kunz H. Bioorg. Med. Chem. 2002, 10: 3085 -
4i
Marcaurelle LA.Bertozzi CR. Glycobiology 2002, 12: 69R -
5a
Takahashi T.Tsukamoto H.Yamada H. Tetrahedron Lett. 1997, 38: 8223 -
5b
Takahashi T.Tsukamoto H.Yamada H. Org. Lett. 1999, 1: 1885 -
5c For review of glycosidation of sialic acid, see:
Okamoto K.Goto T. Tetrahedron 1990, 46: 5835 -
5d
DeNinno MP. Synthesis 1991, 583 -
5e
Ito Y.Gaudino JJ.Paulson JC. Pure Appl. Chem. 1993, 65: 753 -
5f
Boons G.-J.Demchenko AV. Chem. Rev. 2000, 100: 4539 -
5g
Halcomb RL.Cappell MD. J. Carbohydr. Chem. 2002, 21: 723 - 6
Bochkov AF.Zaikov GE. Chemistry of the Glycosidic Bond Pergamon Press; Oxford: 1979. -
7a
Demchenko AV.Boons G.-J. Tetrahedron Lett. 1998, 39: 3065 -
7b
Demchenko AV.Boons G.-J. Chem.-Eur. J. 1999, 5: 1278 -
8a
Yu C.-S.Niikura K.Lin C.-C.Wong C.-H. Angew. Chem. Int. Ed. 2001, 40: 2900 -
8b
Mukaiyama T.Mandai H.Jona H. Chem. Lett. 2002, 1182 -
9a
Komba S.Galustian C.Ishida H.Feizi T.Kannagi R.Kiso M. Angew. Chem. Int. Ed. 1999, 38: 1131 -
9b
Komba S.Yamaguchi M.Ishida H.Kiso M. Biol. Chem. 2001, 382: 223 -
9c
Meo CD.Demchenko AV.Boons G.-J. J. Org. Chem. 2001, 66: 5490 -
9d
Meo CD.Demchenko AV.Boons G.-J. Aust. J. Chem. 2002, 55: 131 - 11
Marra A.Sinäy P. Carbohydr. Res. 1989, 187: 35 -
12a
Sugita T.Higuchi R. Tetrahedron Lett. 1996, 37: 2613 -
12b
Sugita T.Kan Y.Nagaregawa Y.Miyamoto T.Higuchi R. J. Carbohydr. Chem. 1997, 16: 917 -
13a
Paguet A. Can. J. Chem. 1982, 60: 976 -
13b
Lapatsanis L.Milias G.Froussios K.Kolovos M. Synthesis 1983, 671 - 14
Byramova NE.Tuzikov AB.Bovin NV. Carbohydr. Res. 1992, 237: 161 - 15
Hasegawa A.Nagahama T.Ohki H.Hotta K.Ishida H.Kiso M. J. Carbohydr. Chem. 1991, 10: 493 -
16a
Konradsson P.Udodong U.Fraser-Reid B. Tetrahedron Lett. 1990, 31: 4313 -
16b
Veeneman GH.van Leeuwen SH.van Boom JH. Tetrahedron Lett. 1990, 31: 1331 - 17 Glycosidation of the N-Troc-protected β-thiophenyl sialoside 2f with a primary alcohol has already been reported. However, in this report, improvement of the yield in glycosidation was not noted. See:
Ren C.-T.Chen C.-S.Wu S.-H. J. Org. Chem. 2002, 67: 1376 -
18a
Dabrowski U.Friebolin H.Brossmer R.Supp M. Tetrahedron Lett. 1979, 20: 4637 -
18b
Paulsen H.Tietz H. Angew. Chem., Int. Ed. Engl. 1982, 21: 927 - 20
Ando H.Koike Y.Ishida H.Kiso M. Tetrahedron Lett. 2003, 44: 6883 - 21
Seeberger PH.Haase W.-C. Chem. Rev. 2000, 100: 4349 - 22
Raghavan S.Kahne D. J. Am. Chem. Soc. 1993, 115: 1580 -
23a
Yamada H.Harada T.Miyazaki H.Takahashi T. Tetrahedron Lett. 1994, 35: 3979 -
23b
Yamada H.Harada T.Takahashi T. J. Am. Chem. Soc. 1994, 116: 7919 -
23c
Yamada H.Kato T.Takahashi T. Tetrahedron Lett. 1999, 40: 4581 - 24
Douglas NL.Ley SL.Lücking UL.Warriner SL. J. Chem. Soc., Perkin Trans. 1 1998, 51 - 25
Zang Z.Ollmann IR.Ye X.-S.Wischnat R.Baasov T.Wong C.-H. J. Am. Chem. Soc. 1999, 121: 734 -
26a
Yamada H.Takimoto H.Ikeda T.Tsukamoto H.Harada T.Takahashi T. Synlett 2001, 1751 -
26b
Tanaka H.Adachi M.Tsukamoto H.Ikeda T.Yamada H.Takahashi T. Org. Lett. 2002, 4: 4213 ; and references therein - 27
Takahashi T.Adachi M.Matsuda A.Doi T. Tetrahedron Lett. 2000, 41: 2599 -
28a
Iijima H.Ogawa T. Carbohydr. Res. 1989, 186: 95 -
28b
Qiu D.Gandhi SS.Koganty RR. Tetrahedron Lett. 1996, 37: 595 -
28c
Sames D.Chen X.-T.Danishefsky SJ. Nature (London) 1997, 389: 587 -
28d
Schwarz JB.Kuduk SD.Chen X.-T.Sames D.Glunz PW.Danishefsky SJ. J. Am. Chem. Soc. 1999, 121: 2662 -
28e
Brocke C.Kunz H. Synlett 2003, 2052 - For the related approaches using GalNAcα(1→3)-Ser or -Thr derivatives as building blocks, see:
-
29a
Nakahara Y.Iijima H.Ogawa T. Tetrahedron Lett. 1994, 35: 3321 -
29b
Liebe B.Kunz H. Tetrahedron Lett. 1994, 35: 8777 -
29c
Meinjohanns E.Meldal M.Paulsen H.Schleyer A.Bock K. J. Chem. Soc., Perkin Trans. 1 1996, 985 -
29d
Liebe B.Kunz H. Angew. Chem. Int. Ed. 1997, 36: 2830 -
29e
Chen X.-T.Sames D.Danishefsky SJ. J. Am. Chem. Soc. 1998, 120: 7760 -
34a
Matsumoto T.Maeta H.Suzuki K.Tsuchihashi G. Tetrahedron Lett. 1988, 29: 2567 -
34b
Suzuki K.Maeta H.Matsumoto T. Tetrahedron Lett. 1989, 3029: 4853 - 35
Windholz TB.Johnston DBR. Tetrahedron Lett. 1967, 8: 2555
References
We have reported a preliminary result of the sialylation in 83rd Spring Meeting (Tokyo) in 2002 of Japan Chemical Society (3D1-12).
19Selected 1H NMR assignment of disaccharide 4e-g: For 4e-α-isomer: H-3eq (δ = 2.70 ppm), H-4 (δ = 4.90 ppm), J 7,8 = 9.2 Hz, Δδ{H-9′-H-9} = 0.31 ppm. For 4e-β-isomer: H-3eq (δ = 2.54 ppm), H-4 (δ = 5.21 ppm), J 7,8 = 8.7 Hz, Δδ{H-9′-H-9} = 0.93 ppm. For 4f-α-isomer: H-3eq (δ = 2.72 ppm), H-4 (δ = 4.98 ppm), Δδ{H-9′-H-9} = 0.27 ppm. For 4f-β-isomer: H-3eq (δ = 2.54 ppm), H-4 (δ = 5.25 ppm), J 7,8 = 4.8 Hz, Δδ{H-9′-H-9} = 0.91 ppm. For 4g-α-isomer: H-3eq (δ = 2.70 ppm), H-4 (δ = 4.99 ppm), J 7,8 = 8.8 Hz, Δδ{H-9′-H-9} = 0.30 ppm. For 4g-β-isomer: H-3eq (δ = 2.45 ppm), H-4 (δ = 5.21 ppm), Δδ{H-9′-H-9} = 0.91 ppm.
30The α/β ratio was determined by HPLC analysis based on refractive index detection (Eluent: hexane/2-propanol = 90:10, 3.0 mL/min; Retention time: α-isomer 10.7 min, β-isomer 11.7 min). The anomeric configuration of disaccharide 8 was determined by 1H NMR measurement of the isolated isomers according to empirical rule.
31Analytical data of 8: For 8-α: [α]D 21 +43.4 (c 1.00, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.30-7.60 (m, 15 H, aromatic), 5.89 (d, 1 H, Ser-NH, J = 8.3 Hz), 5.40 (ddd, 1 H, Neu-H-8), 5.36 (dd, 1 H, Neu-H-7, J 6,7 = 1.4 Hz, J 7,8 = 8.8 Hz), 5.35 (d, 1 H, J gem = 12.2 Hz), 5.14 (d, 1 H, J gem = 12.6 Hz), 5.11 (d × 2, 2 H), 5.00 (br dd, 1 H, Neu-H-4, J 3ax,4 = 4.9 Hz, J 3eq,4 = 10.8 Hz), 4.94 (d, 1 H, Neu-Troc-NH, J = 10.3 Hz), 4.90 (d, 1 H, J gem = 12.2 Hz), 4.79 (d, 1 H, J gem = 11.7 Hz), 4.78 (d, 1 H, GalNAc-H-1, J 1,2 = 3.4 Hz), 4.65 (d, 1 H, J gem = 11.2 Hz), 4.60 (m, 1 H, Ser-α), 4.36 (d, 1 H, J gem = 12.2 Hz), 4.24 (d, 1 H, Neu-H-9′, J 8,9’ = 1.9 Hz, J gem = 12.7 Hz), 4.16 (br d, 1 H, Neu-H-6, J = 10.8 Hz), 4.06 (dd, 1 H, Neu-H-9, J 8,9 = 4.9 Hz, J gem = 12.7 Hz), 3.91-4.01 (m, 3 H, GalNAc-H-6′, Ser-β), 3.79-3.85 (m, 3 H, GalNAc-H-3, H-4, H-6), 3.65-3.69 (m, 4 H, Neu-H-5, OMe), 3.52 (br dd, 1 H, GalNAc-H-5), 3.36 (dd, 1 H, GalNAc-H-2, J 1,2 = 3.0 Hz, J 2,3 = 10.3 Hz), 2.66 (dd, 1 H, Neu-H-3eq, J 3eq,4 = 4.9 Hz, J gem = 13.2 Hz), 2.25 (d, 1 H, GalNAc-H-3, OH, J = 8.8 Hz), 1.97, 2.00, 2.09, 2.11 (4 s, 12 H, Ac), 1.92 (dd, 1 H, Neu-H-3ax, J 3ax,4 = 10.8 Hz). 13C NMR (100 MHz, CDCl3): δ = 172.0, 170.7, 170.5, 169.8, 166.6, 156.0, 154.5, 138.0, 136.0, 134.9, 128.6, 128.6, 128.5, 128.4, 128.1, 127.9, 127.8, 98.7, 98.2, 95.5, 77.9, 77.2, 75.4, 74.4, 72.3, 71.8, 70.7, 69.2, 68.4, 68.2, 68.1, 67.9, 67.2, 63.3, 62.7, 60.4, 53.8, 52.7, 50.9, 37.0, 20.9, 20.8, 20.7, 20.6. IR (KBr): 3347, 2534, 2109, 1745, 1523, 1369, 1218, 1038, 738, 738, 698 cm-1. Anal. Calcd for C52H60Cl3N5O22: C, 41.47; H, 4.98; N, 5.77. Found: C, 51.03; H, 5.02; N, 5.47. For 8-β: [α]D 22 +37.5 (c 1.00, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.30-7.39 (m, 15 H, aromatic), 6.36 (d, 1 H, Ser-NH, J = 8.8 Hz), 6.22 (d, 1 H, Neu-Troc-NH, J = 10.3 Hz), 5.54 (ddd, 1 H, Neu-H-4, J 3ax,4 = 12.2 Hz, J 3eq,4 = 4.4 Hz), 5.47 (br s, 1 H, Neu-H-7), 5.37 (d, 1 H, J gem = 13.9 Hz), 5.34 (m, 1 H, Neu-H-8), 5.12 (d, 1 H, J gem = 13.9 Hz), 5.11 (d × 2, 2 H), 4.96 (br d, 1 H, Neu-H-9′, J = 11.2 Hz), 4.89 (d, 1 H, GalNAc-H-1, J 1,2 = 2.9 Hz), 4.76 (m, 1 H, Ser-α), 4.75 (d, 1 H, J gem = 12.2 Hz), 4.69 (d × 2, 2 H), 4.53 (d, 1 H, J gem = 11.7 Hz), 4.10 (m, 1 H, Ser-β′), 4.03 (dd, 1 H, Neu-H-9, J 8,9 = 8.8 Hz, J gem = 12.7 Hz), 3.94 (m, 2 H, Neu-H-6, GalNAc-H-5), 3.62 (m, 9 H, Neu-H-5, OMe, GalNAc-H-3, H-4, H-6′, H-6, Ser-β), 3.36 (dd, 1 H, GalNAc-H-2, J 1,2 = 2.9 Hz, J 2,3 = 10.8 Hz), 2.51 (dd, 1 H, Neu-H-3eq, J 3eq,4 = 4.4 Hz, J gem = 13.9 Hz), 1.96 (d, 1 H, GalNAc-H-3-OH), 1.91, 1.97 × 2, 2.01 (3 s, 12 H, Ac), 1.83 (dd, 1 H, Neu-H-3ax, J 3ax,4 = 12.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 170.7, 170.3, 170.0, 169.8, 169.7, 167.7, 156.0, 154.0, 138.0, 156.0, 138.0, 136.1, 135.1, 128.5, 128.5, 128.1, 128.0, 128.0, 127.8, 99.3, 98.4, 95.3, 76.6, 75.1, 74.4, 71.9, 69.6, 69.1, 68.3, 68.0, 67.9, 67.5, 67.3, 67.0, 63.0, 62.2, 60.8, 54.4, 52.8, 51.4, 37.7, 21.0, 20.8, 20.7, 20.6. IR (KBr): 3368, 2955, 2110, 1744, 1530, 1370, 1223, 1036, 944, 736, 696 cm-1.
32The α/β ratio was determined by HPLC analysis based on refractive index detection (Eluent: hexane/2-propanol = 95:5, 3.0 mL/min; Retention time: α-isomer 12.9 min, β-isomer 16.1 min).
33Selected analytical data of 10: For α-sialoside 10 (α-isomer): 1H NMR (400 MHz, CDCl3): δ = 5.61 (dd, 1 H, Gal-H-2, J 1,2 = 3.4 Hz, J 2,3 = 10.3 Hz), 5.55 (d, 1 H, Gal-H-1, J 1,2 = 3.4 Hz). For α-sialoside 10 (β-isomer): [α]D 21 +23.8 (c 1.36, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.05 (d, 2 H, aromatic), 7.13-7.57 (m, 33 H, aromatic), 5.74 (dd, 1 H, Gal-H-2, J 1,2 = 7.3 Hz, J 2,3 = 8.2 Hz), 5.74 (d, 1 H, Ser-NH, J = 6.8 Hz), 5.39 (m, 1 H, Neu-H-8), 5.35 (dd, 1 H, Neu-H-7, J 6,7 < 1 Hz, J 7,8 = 8.3 Hz), 5.09-5.17 (m, 4 H), 5.05 (d, 1 H, J = 11.2 Hz), 4.97 (ddd, 1 H, Neu-H-4, J 3ax,4 = 12.2 Hz, J 3aq,4 = 4.9 Hz, J 4,5 = 9.6 Hz), 4.94 (d, 1 H, J = 11.7 Hz), 4.90 (d, 1 H, J = 12.7 Hz), 4.87 (d, 1 H, J = 10.8 Hz), 4.77 (d, 1 H, Gal-H-1, J 1,2 = 7.8 Hz), 4.69 (d, 1 H, GalNAc-H-1, J 1,2 = 3.4 Hz), 4.67 (d, 1 H, J = 12.2 Hz), 4.61 (d, 1 H, J = 11.2 Hz), 4.58 (d, 1 H, J = 11.7 Hz), 4.56 (m, 1 H, Ser-α), 4.53 (d, 1 H, J = 12.7 Hz), 4.46 (d, 1 H, J = 12.2 Hz), 4.45 (d, 1 H, J = 12.2 Hz), 4.29 (br dd, 1 H, Neu-H-9′, J gem = 11.2 Hz), 4.14 (dd, 1 H, Neu-H-9, J 8,9 = 4.9 Hz, J gem = 11.2 Hz), 4.13 (dd, 1 H, Neu-H-6, J 5,6 = 9.8 Hz, J 6,7 < 1 Hz), 4.05 (br dd, 1 H, Gal-H-4), 3.89-3.99 (m, 4 H, Ser-β, Gal-H-3, H-6′), 3.67-3.69 (m, 6 H, GalNAc-H-4, H-6, Gal-H-3, H-5, H-6, H-6′), 3.59-3.64 (m, 4 H, Neu-H-5, OMe), 3.50 (dd, 1 H, GalNAc-H-2, J 1,2 = 3.0 Hz, J 2,3 = 11.2 Hz), 3.20 (ddd, 1 H, GalNAc-H-5, J = 4.9 Hz, J = 9.3 Hz), 2.56 (dd, 1 H, Neu-H-3eq, J 3eq,4 = 9.3 Hz, J gem = 12.7 Hz), 1.97, 1.99, 2.07, 2.11 (4 s, 12 H, Ac), 1.84 (dd, 1 H, Neu-H-3ax, J 3ax,4 = 12.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 170.6, 170.3, 170.1, 169.8, 169.6, 169.6, 167.7, 165.3, 156.0, 154.0, 138.6, 138.5, 137.7, 137.6, 136.2, 135.1, 132.8, 132.8, 130.2, 129.8, 128.7, 128.6, 128.5, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4, 127.3, 102.6, 99.3, 98.4, 95.4, 79.7, 77.2, 76.8, 75.3, 74.5, 74.4, 74.3, 73.6, 73.4, 72.6, 72.1, 72.0, 71.8, 69.8, 68.7, 68.6, 68.4, 68.3, 67.5, 67.1, 63.8, 62.1, 59.4, 54.5, 52.7, 51.5, 37.7, 21.0, 20.7, 20.7. IR (KBr): 3347, 2952, 2109, 1745, 1520, 1454, 1218, 1040, 737, 698 cm-1.
36Analytical data for 1a: [α]D 26 +67.0 (c 0.16, H2O). 1H NMR (400 MHz, D2O, 303 K): δ = 4.88 (d, 1 H, GalNAc-H-1, J 1,2 = 3.9 Hz), 4.43 (d, 1 H, Gal-H-1, J 1,2 = 7.8 Hz), 4.31 (dd, 1 H, GalNAc-H-2, J 1,2 = 3.4 Hz, J 2,3 = 11.2 Hz), 4.22 (br d, GalNAc-H-4, J = 2.9 Hz), 4.10 (dd, 1 H, Ser-β′, J α, β ′ = 2.4 Hz, J gem = 10.7 Hz), 4.04 (dd, 1 H, GalNAc-H-3, J 2,3 = 11.2 Hz, J 3,4 = 2.9 Hz), 4.01 (m, 1 H, GalNAc-H-5), 3.97 (dd, 1 H, Ser-α, J α, β ′ = 2.4 Hz, J α, β = 4.9 Hz), 3.90 (dd, 1 H, Ser-β, J α, β = 4.9 Hz, J gem = 10.7 Hz), 3.61-3.88 (12 H, Neu5Ac-H-4,5,6,7,8,9′,9, GalNAc-H-6′,6, Gal-H-5,6′), 3.58 (dd, 1 H, Gal-H-3, J 2,3 = 10.3 Hz, J 3,4 = 3.9 Hz), 3.55 (dd, 1 H, Gal-H-6, J 5,6 = 1.0 Hz, J gem = 10.3 Hz), 3.48 (dd, 1 H, Gal-H-2, J 1,2 = 7.8 Hz, J 2,3 = 10.3 Hz), 2.70 (dd, 1 H, Neu5Ac-H-3eq, J 3eq,4 = 4.9 Hz, J gem = 12.7 Hz), 2.00, 2.01 (2 s, 6 H, Ac), 1.65 (dd, 1 H, Neu5Ac-H-3ax, J 3ax,4 = 12.2 Hz). 13C NMR (100 MHz, D2O, acetone-d 6): δ = 175.8, 175.4, 173.9, 172.0, 105.5, 100.9, 99.1, 77.4, 75.8, 73.5, 73.4, 72.4, 71.4, 70.3, 69.4, 69.3, 69.7, 68.9, 67.3, 64.6, 63.5, 61.8, 54.8, 52.6, 49.2, 40.9, 22.9 × 2. IR (KBr): 3330, 1641, 1572, 1393, 1121, 1055, 930, 669 cm-1. MS (ESI-TOF): Calcd for C28H47N3O21Na [M + Na]+ 784.3; found: 784.3.