References
-
1a
Gottschalk A.
Nature (London, U. K.)
1951,
167:
845
-
1b
Sialic Acids: Chemistry, Methabolism and Function
Vol. 10:
Schauer R.
Springer-Verlag;
Wien-New York:
1982.
-
1c
Suzuki Y.
Nagano Y.
Kato H.
Matsumoto M.
Nerome K.
Nakajima K.
Nobusaka E.
J. Biol. Chem.
1986,
261:
17057
-
1d
Varki A.
Glycobiology
1993,
3:
97
-
1e
Biology of Sialic Acids
Rosenberg A.
Plenum Press;
New York, London:
1995.
-
1f
Angata T.
Varki A.
Chem. Rev.
2002,
102:
439
-
2a
Fukuda M.
Carlsson SR.
Klock JC.
Dell A.
J. Biol. Chem.
1986,
261:
12796
-
2b
Hull SR.
Bright A.
Carraway KL.
Abe M.
Hayes DF.
Kufe DW.
Cancer Commun.
1989,
1:
261
-
2c
Saitoh O.
Gallagher RE.
Fukuda M.
Cancer Res.
1991,
51:
2854
-
3a
Kurosawa A.
Kitagawa H.
Fukui S.
Numata Y.
Nakada H.
Funakoshi I.
Kawasaki T.
Ogawa T.
Iijima H.
Yamashita I.
J. Biol. Chem.
1988,
263:
8724
-
3b
Itzkowitz SH.
Yuan M.
Montgomery CK.
Kjeldsen T.
Takahashi HK.
Bigbee WL.
Kim YS.
Cancer Res.
1989,
49:
197
-
3c
Toyokuni T.
Singhal AK.
Chem. Soc. Rev.
1995,
24:
137
-
For recent review of glycopeptide synthesis, see:
-
4a
Meldal M.
St Hilaire PM.
Curr. Opin. Chem. Biol.
1997,
1:
552
-
4b
Herzner H.
Reipen T.
Schultz M.
Kunz H.
Chem. Rev.
2000,
100:
4495
-
4c
St Hilaire PM.
Meldal M.
Angew. Chem. Int. Ed.
2000,
39:
1162
-
4d
Macmillan D.
Bertozzi CR.
Tetrahedron
2000,
56:
9515
-
4e
Seitz O.
ChemBioChem
2000,
1:
214
-
4f
Seitz O.
Heinemann I.
Mattes A.
Waldmann H.
Tetrahedron
2001,
57:
2247
-
4g
Davis BG.
Chem. Rev.
2002,
102:
579
-
4h
Brocke C.
Kunz H.
Bioorg. Med. Chem.
2002,
10:
3085
-
4i
Marcaurelle LA.
Bertozzi CR.
Glycobiology
2002,
12:
69R
-
5a
Takahashi T.
Tsukamoto H.
Yamada H.
Tetrahedron Lett.
1997,
38:
8223
-
5b
Takahashi T.
Tsukamoto H.
Yamada H.
Org. Lett.
1999,
1:
1885
-
5c For review of glycosidation of sialic acid, see: Okamoto K.
Goto T.
Tetrahedron
1990,
46:
5835
-
5d
DeNinno MP.
Synthesis
1991,
583
-
5e
Ito Y.
Gaudino JJ.
Paulson JC.
Pure Appl. Chem.
1993,
65:
753
-
5f
Boons G.-J.
Demchenko AV.
Chem. Rev.
2000,
100:
4539
-
5g
Halcomb RL.
Cappell MD.
J. Carbohydr. Chem.
2002,
21:
723
- 6
Bochkov AF.
Zaikov GE.
Chemistry of the Glycosidic Bond
Pergamon Press;
Oxford:
1979.
-
7a
Demchenko AV.
Boons G.-J.
Tetrahedron Lett.
1998,
39:
3065
-
7b
Demchenko AV.
Boons G.-J.
Chem.-Eur. J.
1999,
5:
1278
-
8a
Yu C.-S.
Niikura K.
Lin C.-C.
Wong C.-H.
Angew. Chem. Int. Ed.
2001,
40:
2900
-
8b
Mukaiyama T.
Mandai H.
Jona H.
Chem. Lett.
2002,
1182
-
9a
Komba S.
Galustian C.
Ishida H.
Feizi T.
Kannagi R.
Kiso M.
Angew. Chem. Int. Ed.
1999,
38:
1131
-
9b
Komba S.
Yamaguchi M.
Ishida H.
Kiso M.
Biol. Chem.
2001,
382:
223
-
9c
Meo CD.
Demchenko AV.
Boons G.-J.
J. Org. Chem.
2001,
66:
5490
-
9d
Meo CD.
Demchenko AV.
Boons G.-J.
Aust. J. Chem.
2002,
55:
131
- 11
Marra A.
Sinäy P.
Carbohydr. Res.
1989,
187:
35
-
12a
Sugita T.
Higuchi R.
Tetrahedron Lett.
1996,
37:
2613
-
12b
Sugita T.
Kan Y.
Nagaregawa Y.
Miyamoto T.
Higuchi R.
J. Carbohydr. Chem.
1997,
16:
917
-
13a
Paguet A.
Can. J. Chem.
1982,
60:
976
-
13b
Lapatsanis L.
Milias G.
Froussios K.
Kolovos M.
Synthesis
1983,
671
- 14
Byramova NE.
Tuzikov AB.
Bovin NV.
Carbohydr. Res.
1992,
237:
161
- 15
Hasegawa A.
Nagahama T.
Ohki H.
Hotta K.
Ishida H.
Kiso M.
J. Carbohydr. Chem.
1991,
10:
493
-
16a
Konradsson P.
Udodong U.
Fraser-Reid B.
Tetrahedron Lett.
1990,
31:
4313
-
16b
Veeneman GH.
van Leeuwen SH.
van Boom JH.
Tetrahedron Lett.
1990,
31:
1331
- 17 Glycosidation of the N-Troc-protected β-thiophenyl sialoside 2f with a primary alcohol has already been reported. However, in this report, improvement of the yield in glycosidation was not noted. See: Ren C.-T.
Chen C.-S.
Wu S.-H.
J. Org. Chem.
2002,
67:
1376
-
18a
Dabrowski U.
Friebolin H.
Brossmer R.
Supp M.
Tetrahedron Lett.
1979,
20:
4637
-
18b
Paulsen H.
Tietz H.
Angew. Chem., Int. Ed. Engl.
1982,
21:
927
- 20
Ando H.
Koike Y.
Ishida H.
Kiso M.
Tetrahedron Lett.
2003,
44:
6883
- 21
Seeberger PH.
Haase W.-C.
Chem. Rev.
2000,
100:
4349
- 22
Raghavan S.
Kahne D.
J. Am. Chem. Soc.
1993,
115:
1580
-
23a
Yamada H.
Harada T.
Miyazaki H.
Takahashi T.
Tetrahedron Lett.
1994,
35:
3979
-
23b
Yamada H.
Harada T.
Takahashi T.
J. Am. Chem. Soc.
1994,
116:
7919
-
23c
Yamada H.
Kato T.
Takahashi T.
Tetrahedron Lett.
1999,
40:
4581
- 24
Douglas NL.
Ley SL.
Lücking UL.
Warriner SL.
J. Chem. Soc., Perkin Trans. 1
1998,
51
- 25
Zang Z.
Ollmann IR.
Ye X.-S.
Wischnat R.
Baasov T.
Wong C.-H.
J. Am. Chem. Soc.
1999,
121:
734
-
26a
Yamada H.
Takimoto H.
Ikeda T.
Tsukamoto H.
Harada T.
Takahashi T.
Synlett
2001,
1751
-
26b
Tanaka H.
Adachi M.
Tsukamoto H.
Ikeda T.
Yamada H.
Takahashi T.
Org. Lett.
2002,
4:
4213 ; and references therein
- 27
Takahashi T.
Adachi M.
Matsuda A.
Doi T.
Tetrahedron Lett.
2000,
41:
2599
-
28a
Iijima H.
Ogawa T.
Carbohydr. Res.
1989,
186:
95
-
28b
Qiu D.
Gandhi SS.
Koganty RR.
Tetrahedron Lett.
1996,
37:
595
-
28c
Sames D.
Chen X.-T.
Danishefsky SJ.
Nature (London)
1997,
389:
587
-
28d
Schwarz JB.
Kuduk SD.
Chen X.-T.
Sames D.
Glunz PW.
Danishefsky SJ.
J. Am. Chem. Soc.
1999,
121:
2662
-
28e
Brocke C.
Kunz H.
Synlett
2003,
2052
-
For the related approaches using GalNAcα(1→3)-Ser or -Thr derivatives as building blocks, see:
-
29a
Nakahara Y.
Iijima H.
Ogawa T.
Tetrahedron Lett.
1994,
35:
3321
-
29b
Liebe B.
Kunz H.
Tetrahedron Lett.
1994,
35:
8777
-
29c
Meinjohanns E.
Meldal M.
Paulsen H.
Schleyer A.
Bock K.
J. Chem. Soc., Perkin Trans. 1
1996,
985
-
29d
Liebe B.
Kunz H.
Angew. Chem. Int. Ed.
1997,
36:
2830
-
29e
Chen X.-T.
Sames D.
Danishefsky SJ.
J. Am. Chem. Soc.
1998,
120:
7760
-
34a
Matsumoto T.
Maeta H.
Suzuki K.
Tsuchihashi G.
Tetrahedron Lett.
1988,
29:
2567
-
34b
Suzuki K.
Maeta H.
Matsumoto T.
Tetrahedron Lett.
1989,
3029:
4853
- 35
Windholz TB.
Johnston DBR.
Tetrahedron Lett.
1967,
8:
2555
10 We have reported a preliminary result of the sialylation in 83rd Spring Meeting (Tokyo) in 2002 of Japan Chemical Society (3D1-12).
19 Selected 1H NMR assignment of disaccharide 4e-g: For 4e-α-isomer: H-3eq (δ = 2.70 ppm), H-4 (δ = 4.90 ppm), J
7,8 = 9.2 Hz, Δδ{H-9′-H-9} = 0.31 ppm. For 4e-β-isomer: H-3eq (δ = 2.54 ppm), H-4 (δ = 5.21 ppm), J
7,8 = 8.7 Hz, Δδ{H-9′-H-9} = 0.93 ppm. For 4f-α-isomer: H-3eq (δ = 2.72 ppm), H-4 (δ = 4.98 ppm), Δδ{H-9′-H-9} = 0.27 ppm. For 4f-β-isomer: H-3eq (δ = 2.54 ppm), H-4 (δ = 5.25 ppm), J
7,8 = 4.8 Hz, Δδ{H-9′-H-9} = 0.91 ppm. For 4g-α-isomer: H-3eq (δ = 2.70 ppm), H-4 (δ = 4.99 ppm), J
7,8 = 8.8 Hz, Δδ{H-9′-H-9} = 0.30 ppm. For 4g-β-isomer: H-3eq (δ = 2.45 ppm), H-4 (δ = 5.21 ppm), Δδ{H-9′-H-9} = 0.91 ppm.
30 The α/β ratio was determined by HPLC analysis based on refractive index detection (Eluent: hexane/2-propanol = 90:10, 3.0 mL/min; Retention time: α-isomer 10.7 min, β-isomer 11.7 min). The anomeric configuration of disaccharide 8 was determined by 1H NMR measurement of the isolated isomers according to empirical rule.
31 Analytical data of 8: For 8-α: [α]D
21 +43.4 (c 1.00, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.30-7.60 (m, 15 H, aromatic), 5.89 (d, 1 H, Ser-NH, J = 8.3 Hz), 5.40 (ddd, 1 H, Neu-H-8), 5.36 (dd, 1 H, Neu-H-7, J
6,7 = 1.4 Hz, J
7,8 = 8.8 Hz), 5.35 (d, 1 H, J
gem = 12.2 Hz), 5.14 (d, 1 H, J
gem = 12.6 Hz), 5.11 (d × 2, 2 H), 5.00 (br dd, 1 H, Neu-H-4, J
3ax,4 = 4.9 Hz, J
3eq,4 = 10.8 Hz), 4.94 (d, 1 H, Neu-Troc-NH, J = 10.3 Hz), 4.90 (d, 1 H, J
gem = 12.2 Hz), 4.79 (d, 1 H, J
gem = 11.7 Hz), 4.78 (d, 1 H, GalNAc-H-1, J
1,2 = 3.4 Hz), 4.65 (d, 1 H, J
gem = 11.2 Hz), 4.60 (m, 1 H, Ser-α), 4.36 (d, 1 H, J
gem = 12.2 Hz), 4.24 (d, 1 H, Neu-H-9′, J
8,9’ = 1.9 Hz, J
gem = 12.7 Hz), 4.16 (br d, 1 H, Neu-H-6, J = 10.8 Hz), 4.06 (dd, 1 H, Neu-H-9, J
8,9 = 4.9 Hz, J
gem = 12.7 Hz), 3.91-4.01 (m, 3 H, GalNAc-H-6′, Ser-β), 3.79-3.85 (m, 3 H, GalNAc-H-3, H-4, H-6), 3.65-3.69 (m, 4 H, Neu-H-5, OMe), 3.52 (br dd, 1 H, GalNAc-H-5), 3.36 (dd, 1 H, GalNAc-H-2, J
1,2 = 3.0 Hz, J
2,3 = 10.3 Hz), 2.66 (dd, 1 H, Neu-H-3eq, J
3eq,4 = 4.9 Hz, J
gem = 13.2 Hz), 2.25 (d, 1 H, GalNAc-H-3, OH, J = 8.8 Hz), 1.97, 2.00, 2.09, 2.11 (4 s, 12 H, Ac), 1.92 (dd, 1 H, Neu-H-3ax, J
3ax,4 = 10.8 Hz). 13C NMR (100 MHz, CDCl3): δ = 172.0, 170.7, 170.5, 169.8, 166.6, 156.0, 154.5, 138.0, 136.0, 134.9, 128.6, 128.6, 128.5, 128.4, 128.1, 127.9, 127.8, 98.7, 98.2, 95.5, 77.9, 77.2, 75.4, 74.4, 72.3, 71.8, 70.7, 69.2, 68.4, 68.2, 68.1, 67.9, 67.2, 63.3, 62.7, 60.4, 53.8, 52.7, 50.9, 37.0, 20.9, 20.8, 20.7, 20.6. IR (KBr): 3347, 2534, 2109, 1745, 1523, 1369, 1218, 1038, 738, 738, 698 cm-1. Anal. Calcd for C52H60Cl3N5O22: C, 41.47; H, 4.98; N, 5.77. Found: C, 51.03; H, 5.02; N, 5.47. For 8-β: [α]D
22 +37.5 (c 1.00, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.30-7.39 (m, 15 H, aromatic), 6.36 (d, 1 H, Ser-NH, J = 8.8 Hz), 6.22 (d, 1 H, Neu-Troc-NH, J = 10.3 Hz), 5.54 (ddd, 1 H, Neu-H-4, J
3ax,4 = 12.2 Hz, J
3eq,4 = 4.4 Hz), 5.47 (br s, 1 H, Neu-H-7), 5.37 (d, 1 H, J
gem = 13.9 Hz), 5.34 (m, 1 H, Neu-H-8), 5.12 (d, 1 H, J
gem = 13.9 Hz), 5.11 (d × 2, 2 H), 4.96 (br d, 1 H, Neu-H-9′, J = 11.2 Hz), 4.89 (d, 1 H, GalNAc-H-1, J
1,2 = 2.9 Hz), 4.76 (m, 1 H, Ser-α), 4.75 (d, 1 H, J
gem = 12.2 Hz), 4.69 (d × 2, 2 H), 4.53 (d, 1 H, J
gem = 11.7 Hz), 4.10 (m, 1 H, Ser-β′), 4.03 (dd, 1 H, Neu-H-9, J
8,9 = 8.8 Hz, J
gem = 12.7 Hz), 3.94 (m, 2 H, Neu-H-6, GalNAc-H-5), 3.62 (m, 9 H, Neu-H-5, OMe, GalNAc-H-3, H-4, H-6′, H-6, Ser-β), 3.36 (dd, 1 H, GalNAc-H-2, J
1,2 = 2.9 Hz, J
2,3 = 10.8 Hz), 2.51 (dd, 1 H, Neu-H-3eq, J
3eq,4 = 4.4 Hz, J
gem = 13.9 Hz), 1.96 (d, 1 H, GalNAc-H-3-OH), 1.91, 1.97 × 2, 2.01 (3 s, 12 H, Ac), 1.83 (dd, 1 H, Neu-H-3ax, J
3ax,4 = 12.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 170.7, 170.3, 170.0, 169.8, 169.7, 167.7, 156.0, 154.0, 138.0, 156.0, 138.0, 136.1, 135.1, 128.5, 128.5, 128.1, 128.0, 128.0, 127.8, 99.3, 98.4, 95.3, 76.6, 75.1, 74.4, 71.9, 69.6, 69.1, 68.3, 68.0, 67.9, 67.5, 67.3, 67.0, 63.0, 62.2, 60.8, 54.4, 52.8, 51.4, 37.7, 21.0, 20.8, 20.7, 20.6. IR (KBr): 3368, 2955, 2110, 1744, 1530, 1370, 1223, 1036, 944, 736, 696 cm-1.
32 The α/β ratio was determined by HPLC analysis based on refractive index detection (Eluent: hexane/2-propanol = 95:5, 3.0 mL/min; Retention time: α-isomer 12.9 min, β-isomer 16.1 min).
33 Selected analytical data of 10: For α-sialoside 10 (α-isomer): 1H NMR (400 MHz, CDCl3): δ = 5.61 (dd, 1 H, Gal-H-2, J
1,2 = 3.4 Hz, J
2,3 = 10.3 Hz), 5.55 (d, 1 H, Gal-H-1, J
1,2 = 3.4 Hz). For α-sialoside 10 (β-isomer): [α]D
21 +23.8 (c 1.36, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.05 (d, 2 H, aromatic), 7.13-7.57 (m, 33 H, aromatic), 5.74 (dd, 1 H, Gal-H-2, J
1,2 = 7.3 Hz, J
2,3 = 8.2 Hz), 5.74 (d, 1 H, Ser-NH, J = 6.8 Hz), 5.39 (m, 1 H, Neu-H-8), 5.35 (dd, 1 H, Neu-H-7, J
6,7 < 1 Hz, J
7,8 = 8.3 Hz), 5.09-5.17 (m, 4 H), 5.05 (d, 1 H, J = 11.2 Hz), 4.97 (ddd, 1 H, Neu-H-4, J
3ax,4 = 12.2 Hz, J
3aq,4 = 4.9 Hz, J
4,5 = 9.6 Hz), 4.94 (d, 1 H, J = 11.7 Hz), 4.90 (d, 1 H, J = 12.7 Hz), 4.87 (d, 1 H, J = 10.8 Hz), 4.77 (d, 1 H, Gal-H-1, J
1,2 = 7.8 Hz), 4.69 (d, 1 H, GalNAc-H-1, J
1,2 = 3.4 Hz), 4.67 (d, 1 H, J = 12.2 Hz), 4.61 (d, 1 H, J = 11.2 Hz), 4.58 (d, 1 H, J = 11.7 Hz), 4.56 (m, 1 H, Ser-α), 4.53 (d, 1 H, J = 12.7 Hz), 4.46 (d, 1 H, J = 12.2 Hz), 4.45 (d, 1 H, J = 12.2 Hz), 4.29 (br dd, 1 H, Neu-H-9′, J
gem = 11.2 Hz), 4.14 (dd, 1 H, Neu-H-9, J
8,9 = 4.9 Hz, J
gem = 11.2 Hz), 4.13 (dd, 1 H, Neu-H-6, J
5,6 = 9.8 Hz, J
6,7 < 1 Hz), 4.05 (br dd, 1 H, Gal-H-4), 3.89-3.99 (m, 4 H, Ser-β, Gal-H-3, H-6′), 3.67-3.69 (m, 6 H, GalNAc-H-4, H-6, Gal-H-3, H-5, H-6, H-6′), 3.59-3.64 (m, 4 H, Neu-H-5, OMe), 3.50 (dd, 1 H, GalNAc-H-2, J
1,2 = 3.0 Hz, J
2,3 = 11.2 Hz), 3.20 (ddd, 1 H, GalNAc-H-5, J = 4.9 Hz, J = 9.3 Hz), 2.56 (dd, 1 H, Neu-H-3eq, J
3eq,4 = 9.3 Hz, J
gem = 12.7 Hz), 1.97, 1.99, 2.07, 2.11 (4 s, 12 H, Ac), 1.84 (dd, 1 H, Neu-H-3ax, J
3ax,4 = 12.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 170.6, 170.3, 170.1, 169.8, 169.6, 169.6, 167.7, 165.3, 156.0, 154.0, 138.6, 138.5, 137.7, 137.6, 136.2, 135.1, 132.8, 132.8, 130.2, 129.8, 128.7, 128.6, 128.5, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.4, 127.3, 102.6, 99.3, 98.4, 95.4, 79.7, 77.2, 76.8, 75.3, 74.5, 74.4, 74.3, 73.6, 73.4, 72.6, 72.1, 72.0, 71.8, 69.8, 68.7, 68.6, 68.4, 68.3, 67.5, 67.1, 63.8, 62.1, 59.4, 54.5, 52.7, 51.5, 37.7, 21.0, 20.7, 20.7. IR (KBr): 3347, 2952, 2109, 1745, 1520, 1454, 1218, 1040, 737, 698 cm-1.
36 Analytical data for 1a: [α]D
26 +67.0 (c 0.16, H2O). 1H NMR (400 MHz, D2O, 303 K): δ = 4.88 (d, 1 H, GalNAc-H-1, J
1,2 = 3.9 Hz), 4.43 (d, 1 H, Gal-H-1, J
1,2 = 7.8 Hz), 4.31 (dd, 1 H, GalNAc-H-2, J
1,2 = 3.4 Hz, J
2,3 = 11.2 Hz), 4.22 (br d, GalNAc-H-4, J = 2.9 Hz), 4.10 (dd, 1 H, Ser-β′, J
α,
β
′ = 2.4 Hz, J
gem = 10.7 Hz), 4.04 (dd, 1 H, GalNAc-H-3, J
2,3 = 11.2 Hz, J
3,4 = 2.9 Hz), 4.01 (m, 1 H, GalNAc-H-5), 3.97 (dd, 1 H, Ser-α, J
α,
β
′ = 2.4 Hz, J
α,
β = 4.9 Hz), 3.90 (dd, 1 H, Ser-β, J
α,
β = 4.9 Hz, J
gem = 10.7 Hz), 3.61-3.88 (12 H, Neu5Ac-H-4,5,6,7,8,9′,9, GalNAc-H-6′,6, Gal-H-5,6′), 3.58 (dd, 1 H, Gal-H-3, J
2,3 = 10.3 Hz, J
3,4 = 3.9 Hz), 3.55 (dd, 1 H, Gal-H-6, J
5,6 = 1.0 Hz, J
gem = 10.3 Hz), 3.48 (dd, 1 H, Gal-H-2, J
1,2 = 7.8 Hz, J
2,3 = 10.3 Hz), 2.70 (dd, 1 H, Neu5Ac-H-3eq, J
3eq,4 = 4.9 Hz, J
gem = 12.7 Hz), 2.00, 2.01 (2 s, 6 H, Ac), 1.65 (dd, 1 H, Neu5Ac-H-3ax, J
3ax,4 = 12.2 Hz). 13C NMR (100 MHz, D2O, acetone-d
6): δ = 175.8, 175.4, 173.9, 172.0, 105.5, 100.9, 99.1, 77.4, 75.8, 73.5, 73.4, 72.4, 71.4, 70.3, 69.4, 69.3, 69.7, 68.9, 67.3, 64.6, 63.5, 61.8, 54.8, 52.6, 49.2, 40.9, 22.9 × 2. IR (KBr): 3330, 1641, 1572, 1393, 1121, 1055, 930, 669 cm-1. MS (ESI-TOF): Calcd for C28H47N3O21Na [M + Na]+ 784.3; found: 784.3.