Subscribe to RSS
DOI: 10.1055/s-2004-817769
Stereoselective Synthesis of the Fully Functionalized HIJ-ring Framework of Ciguatoxin
Publication History
Publication Date:
10 February 2004 (online)
Abstract
An efficient convergent synthetic route to construct the HIJ-ring system of ciguatoxin was achieved via stereo controlled eight-membered ring formation by using acetylene cobalt complex and subsequent six-membered ring formation through intramolecular 1,4-addition reaction.
Key words
alkyne cobalt complexes - reductive decomplexation - medium sized ring closure reaction - intramolecular 1,4-addition reaction - ciguatoxin.
- For reviews, see:
-
1a
Gillespie NC.Lewis RJ.Pearn J.Bourke ATC.Helms MJ.Bourke JB.Shields WJ. Ned. J. Aust. 1986, 145: 584 -
1b
Yasumoto T.Murata M. Chem. Rev. 1993, 93: 1897 -
1c
Scheuer PJ. Tetrahedron 1994, 50: 3 -
1d
Yasumoto T. Chem. Rec. 2001, 1: 228 -
1e
Lewis RJ. Toxicon 2001, 39: 97 - 2 For the origin of CTXs, see:
Yasumoto T.Nakajima R.Bagnis R.Adachi R. Nippon Suisan Gakkaishi 1977, 43: 1021 - For the characterization of CTXs, see:
-
3a
Scheuer PJ.Takahashi W.Tsutsumi J.Yoshida T. Science 1967, 155: 1267 -
3b
Tachibana K. Ph.D. Thesis University of Hawaii; Hawaii: 1980. -
3c
Murata M.Legrand AM.Ishibashi Y.Yasumoto T. J. Am. Chem. Soc. 1989, 111: 8929 -
3d
Murata M.Legrand AM.Yasumoto T. Tetrahedron Lett. 1989, 30: 3793 -
3e
Murata M.Legrand AM.Ishibashi Y.Fukui M.Yasumoto T. J. Am. Chem. Soc. 1990, 112: 4380 -
3f
Murata M.Legrand AM.Scheuer PJ.Yasumoto T. Tetrahedron Lett. 1992, 33: 525 -
3g
Satake M.Morohashi A.Oguri H.Oishi T.Hirama M.Harada N.Yasumoto T. J. Am. Chem. Soc. 1997, 119: 11325 - For the bioactivity of CTXs, see:
-
4a
Lombert A.Bidard J.-N.Lazdunski M. FEBS Lett. 1987, 219: 355 -
4b
Lewis RJ.Sellin M.Poli MA.Norton RS.Macleod JK.Sheil MM. Toxicon 1991, 29: 1115 -
4c
Dechraoui M.-Y.Naar J.Pauillac S.Legrand A.-M. Toxicon 1999, 37: 125 -
4d
Anger T.Madge D.-J.Mulla M.Riddall D. J. Med. Chem. 2001, 44: 115 -
4e
Lin Y.-Y.Risk M.Ray SM.Engen DV.Clardy J.Golik J.James JC.Nakanishi K. J. Am. Chem. Soc. 1981, 103: 6773 -
4f
Shimizu Y.Chou H.-N.Bando H.Duyne GV.Clardy JC. J. Am. Chem. Soc. 1986, 108: 514 -
5a
Hirama M.Oishi T.Uehara H.Inoue M.Maruyama M.Oguri H.Satake M. Science 2001, 294: 1904 -
5b
Inoue M.Uehara H.Maruyama M.Hirama M. Org. Lett. 2002, 4: 4551 -
5c
Tatami A.Inoue M.Uehara H.Hirama M. Tetrahedron Lett. 2003, 44: 5229 - For recent synthetic studies of ciguatoxin in our laboratory, see:
-
6a
Saeeng R.Isobe M. Heterocycles 2001, 54: 789 -
6b
Kira K.Hamajima A.Isobe M. Tetrahedron 2002, 58: 1875 -
6c
Takai S.Sawada N.Isobe M. J. Org. Chem. 2003, 68: 3225 -
6d
Baba T.Huang G.Isobe M. Tetrahedron 2003, 59: 6851 ; and references therein - 7 For a review of the Nicholas reaction, see:
Teobald BJ. Tetrahedron 2002, 58: 4133 - For construction of medium sized ether rings via acetylene cobalt complexes in a highly stereoselective syn-trans orientation, see:
-
8a
Isobe M.Yenjai C.Tanaka S. Synlett 1994, 11: 916 -
8b
Yenjai C.Isobe M. Tetrahedron 1998, 54: 2509 -
8c
Isobe M.Hosokawa S.Kira K. Chem. Lett. 1996, 473 -
8d
Isobe M.Nishizawa R.Hosokawa S.Nishikawa T. Chem. Commun. 1998, 2665 - 9
Lewis MD.Cha JK.Kishi Y. J. Am. Chem. Soc. 1982, 104: 4976 - 10
Smidt J.Hafner W.Jira R.Sieber R.Sedlmeier J.Sabel A. Angew. Chem., Int. Ed. Engl. 1962, 1: 80 - For reductive decomplexation reaction into cis-olefins or vinylsilanes, see:
-
13a
Hosokawa S.Isobe M. Tetrahedron Lett. 1998, 39: 2609 -
13b
Shibuya S.Isobe M. Tetrahedron 1998, 54: 6677 -
13c
Takai S.Ploypradith P.Hamajima A.Kira K.Isobe M. Synlett 2002, 588 - 14
Lee H.-Y.An M. Tetrahedron Lett. 2003, 44: 2775 -
15a
Kira K.Tanda H.Hamajima A.Baba T.Takai S.Isobe M. Tetrahedron 2002, 58: 6485 -
15b
Absence of BTMSA leads to further reduction of unsaturated ketone product to corresponding saturated carbonyl compound.
- 17
Fernandes-Megia E.Lay SV. Synlett 2000, 455 - 18
Redlich H.Sudau W.Paulsen H. Tetrahedron 1985, 41: 4253 - 20
Burford C.Cooke F.Ehlinger E.Magnus P. J. Am. Chem. Soc. 1977, 99: 4536
References
Physical data for 7a. 1H NMR (400 MHz, CDCl3): δ = 1.39 (1 H, q, J = 11.0 Hz, H-43a), 1.84 (1 H, br, -OH), 2.58 (1 H, dd, J = 15.5, 9.0 Hz, H-40a), 2.61 (1 H, dt, J = 11.0, 4.0 Hz, H-43b), 2.92 (1 H, dd, J = 15.5, 2.0 Hz, H-40b), 3.25-3.45 (4 H, m, H-41, H-42, H-44, H-45), 3.38 (3 H, s, -OCH 3 ), 3.39 (3 H, s, -OCH 3 ), 3.56 (1 H, dd, J = 10.5, 4.0 Hz, H-46a), 3.64 (1 H, dd, J = 10.5, 1.5 Hz, H-46b). HRMS (FAB) calcd for C12H20F3O7S+ [M + H]+: 365.0882. Found: 365.0872.
12Physical data for 6. 1H NMR (300 MHz, CDCl3): δ = 1.10, 1.11 (3 H, s, -CH3), 1.37, 1.38 [3 H, s, -C(CH 3 )2], 1.46 [3 H, s, -C(CH 3 )2], 1.78-1.90 (total 1 H, m, H-35a), 1.95, 2.07 (total 1 H, ddd, J = 14.5, 5.0, 2.5 Hz and J = 14.5, 4.0, 2.0 Hz, H-35b), 2.50-2.61 (total 2 H, m, H-36, acetylene), 2.78, 2.84 (total 1 H, dd, J = 17.0, 3.5 Hz and J = 17.5, 3.0 Hz, H-31), 3.03, 3.22 (total 1 H, br-s, -OH), 3.82, 4.10 (total 1 H, dd, J = 10.0, 2.0 Hz and J = 10.0, 2.5 Hz, H-34), 4.22, 4.29 (total 1 H, dd, J = 9.5, 3.0 Hz and J = 9.0, 3.5 Hz, H-32), 4.64, 4.75 (total 1 H, m, H-36). Anal. Calcd for C13H19NO4: C, 61.64; H, 7.56; N, 5.53. Found: C, 61.65; H, 7.51; N, 5.43.
16Physical data for 20. 1H NMR (400 MHz, CDCl3) δ = 1.34 (3 H, s, H-56), 1.40 (1 H, q, J = 11.5 Hz, H-43a), 1.93 (1 H, q, J = 11.5 Hz, H-35a), 2.50 (1 H, dt, J = 11.5, 5.0 Hz, H-35b), 2.53 (1 H, ddd, J = 11.5, 4.5, 4.0 Hz, H43b), 2.60 (1 H, dd, J = 17.0, 4.0 Hz, H-31a), 2.62 (1 H, dd, J = 17.0, 8.0 Hz, H-31b), 2.69 (1 H, ddd, J = 11.0, 4.0, 2.0 Hz, H-38a), 2.79-2.89 (3 H, m, H-38b, H-40a, H-40b), 3.21 (1 H, d, J = 8.0 Hz, -OH), 3.20-3.26 (2 H, m, H-44, H-45), 3.32 (1 H, ddd, J = 11.5, 9.5, 4.5 Hz, H-42), 3.34 (3 H, s, -OCH 3), 3.38 (3 H, s, -OCH 3), 3.43 (1 H, ddd, J = 11.5, 9.5, 5.0 Hz, H-36), 3.48 (1 H, ddd, J = 10.5, 9.5, 4.5 Hz, H-41), 3.53 (1 H, dd, J = 10.5, 4.0 Hz, H-46b), 3.61 (1 H, dd, J = 10.5, 1.5 Hz, H-46b), 3.74 (1 H, td, J = 8.0, 4.0 Hz, H-32), 3.75 (1 H, ddd, J = 10.5, 9.5, 4.0 Hz, H-37), 5.40 (1 H, dd, J = 12.0, 5.0 Hz, H-34), 7.45-7.52 (2 H, m, aromatic), 7.60-7.64 (1 H, m, aromatic), 7.96-8.00 (2 H, m, aromatic). HRMS (FAB) calcd for C27H35NNaO9 + [M + Na]+: 540.2210. Found: 540.2180.
19Physical data for 29. 1H NMR (400 MHz, CDCl3) δ = 0.89-1.06 {21 H, m, -Si[CH(CH 3)2]3}, 1.07 (3 H, d, J = 7.0 Hz, CH3-57), 1.33 (1 H, m, H-43a), 1.45-1.71 (2 H, m, H-38a, H-40a), 1.47 (3/2 H, s, H-56), 1.49 (3/2 H, s, H-56*), 1.72-1.80 (1 H, m, H-35a), 1.82-2.09 (3 H, m, H-38b, H-39, H-40b), 2.48-2.57 (3 H, m, H-31a, H-35b, H-43b), 2.82 (1/2 H, dd, J = 16.5, 5.5 Hz, H-31b), 2.89 (1/2 H, dd, J = 16.5, 5.5 Hz, H-31b*), 3.10-3.66 (6 H, m, H-36, H-37, H-41, H-42, H-44, H-45), 3.35 (3 H, s, -OCH 3) 3.40 (3 H, s, -OCH 3), 3.49 (1 H, dd, J = 10.5, 5.5 Hz, H-46a), 3.63 (1 H, dd, J = 10.5, 2.0 Hz, H-46b), 3.97 (1/2 H, t, J = 5.5 Hz, H-32), 4.05 (1/2 H, dd, J = 5.5, 4.5 Hz, H-32*), 5.15 (1 H, dd, J = 11.5, 4.5 Hz, H-34), 7.44-7.49 (2 H, m, aromatic), 7.58-7.62 (1 H, m, aromatic), 7.99-7.02 (2 H, m, aromatic). The fractional integral values result from the existence of a rotational isomer at C32-C33 bond. HRMS (FAB) calcd for C37H59O8NNaSi+ [M + Na]+: 696.3907. Found: 696.3917.