RSS-Feed abonnieren
DOI: 10.1055/s-2004-817775
Arabinosylamine in Asymmetric Syntheses of Chiral Piperidine Alkaloids
Publikationsverlauf
Publikationsdatum:
10. Februar 2004 (online)
Abstract
The stereodifferentiating potential of arabinosyl aldimines was utilized in stereoselective syntheses of 2-substituted dehydropiperidinones and their further transformation to 2,6-cis-substituted piperidinones. The absolute configuration was proven by X-ray analysis and by the synthesis of the enantiomerically pure alkaloid (+)-dihydropinidine. The presented method offers the possibility to synthesize piperidine derivatives enantiomeric to those obtained by the application of the corresponding galactosylamine auxiliary.
Key words
carbohydrate auxiliaries - arabinosylamine - domino Mannich-Michael reaction - piperidine alkaloids - conjugate cuprate addition
-
1a
Daly JW.Garraffo HM.Spande TF. In The Alkaloids - Chemistry and Pharmacology Vol. 43:Cordell GA. Academic Press; San Diego: 1993. p.185 -
1b
Daly JW. Nat. Prod. 1998, 61: 162 -
1c
Daly JW.Garraffo HM.Spande TF. In Alkaloids - Chemical and Biological Perspectives Vol. 13:Pelletier SW. Pergamon; New York: 1999. p.1 - 2
Bailey PD.Millwood PA.Smith PD. Chem. Commun. 1998, 1915 -
3a
Kobayashi S.Ishitani H. Angew. Chem. Int. Ed. 1998, 37: 979 -
3b
Reding MT.Buchwald SL. J. Org. Chem. 1998, 63: 6344 - 4
Weymann M.Pfrengle W.Schollmeyer D.Kunz H. Synthesis 1997, 1151 - 5
Kunz H.Pfrengle W. Angew. Chem., Int. Ed. Engl. 1989, 28: 1067 -
6a
Kunz H.Sager W. Angew. Chem., Int. Ed. Engl. 1987, 26: 557 -
6b
Kunz H.Sager W.Schanzenbach D.Decker M. Liebigs Ann. Chem. 1991, 649 -
7a
Kunz H.Pfrengle W. J. Am. Chem. Soc. 1988, 110: 651 -
7b
Kunz H.Pfrengle W.Rück K.Sager W. Synthesis 1991, 1039 -
8a
Laschat S.Kunz H. Synlett 1990, 51 -
8b
Laschat S.Kunz H. J. Org. Chem. 1991, 56: 5883 - 9
Danishefsky S. J. Am. Chem. Soc. 1974, 96: 7807 - 10
Weymann M.Schultz-Kukula M.Knauer S.Kunz H. Monatsh. Chem. 2002, 133: 571 - 12
Yamamoto Y. Angew. Chem., Int. Ed. Engl. 1986, 25: 947 - 13
Gilman H.Jones RG.Woods LA. J. Org. Chem. 1952, 17: 1630 - 14
Corey EJ.Boaz W. Tetrahedron Lett. 1985, 26: 6019 - 17
Ciblat S.Besse P.Papastergiou V.Veschambre H.Canet J.-L.Troin Y. Tetrahedron: Asymmetry 2000, 11: 2221 ; and references therein
References
Compoumd 6d: [a]D
25 +66.6 (c 1, CHCl3). 1H NMR (200 MHz, CDCl3): d = 6.90 (d, 1 H, J
H-6,H-5 = 7.3 Hz, CH=CH), 5.55 (t, 1 H, J
H-2
′
,H-1
′ = 9.5 Hz, J
H-2
′
,H-3
′ = 9.5 Hz, H-2¢),
5.30-5.20 (m, 1 H, H-4¢), 5.13 (dd, 1 H, J
H-3
′
,H-2
′ = 10.0 Hz, J
H-3
′
,H-4
′= 3.2 Hz, H-3¢), 4.93 (d, 1 H, J
H-5,H-6 = 7.3 Hz, CH=CH), 4.44 (d, 1 H, J
H-1
′
,H-2
′ = 9.3 Hz, H-1¢), 4.02 (dd, 1 H, J
H-5
′
a,H-5
′
b = 13.2 Hz, J
H-5
′
a,H-4
′ = 2.0 Hz, H-5¢a), 3.80-3.70 (m, 1 H, PrCHN), 3.67 (d, 1 H, J
H-5
′
b,H-5
′
a = 13.2 Hz, H-5¢b), 2.60 (dd, 1 H, J
H-3a,H-3b = 16.6 Hz, J
H-3a,H-2 = 6.3 Hz, CHHC=O), 2.34 (d, 1 H, J
H-3b,H-3a = 16.6 Hz, CHHC=O), 2.00-1.75 [m, 1 H, (CHH)2CH3], 1.65-1.50 (m, 1 H, (CHH)2CH3), 1.30-1.10 (m, 27 H, piv CH3), 0.86 [t, 3 H, J = 7.3 Hz, (CH2)CH
3] ppm. 13C NMR (50.3 MHz, CDCl3): δ = 192.15 (C=O), 177.21, 176.76 (pivC=O), 149.92 (CH=CH), 99.79 (CH=CH), 92.13 (C-1¢), 71.13, 67.97, 66.06 (C-2¢, C-3¢, C-4¢), 66.22 (C-5¢), 53.48 (PrCHN), 38.97 (CH2C=O), 38.89, 38.82, 38.77 (pivCquart.), 32.66 [(CH2)CH3], 27.21, 27.13, 27.02 (piv-CH3), 18.90 [(CH2)CH3], 13.81 [(CH2)CH3] ppm; X-ray analysis: P212121(orthorhombic), a = 9.8895(13) Å, b = 10.1820(11) Å, c = 30.614(4) Å, V = 3082.7(6) Å3, z = 4, F(000) = 1136, CAD4 Enraf Nonius, Cu-Kα, SIR-92, SHELXL-97. Further details of the crystal structure analysis are available on request from the Cambridge Crystallographic Data Centre quoting the deposit number CCDC 229785.
X-ray analysis: P1(triclinic), a = 10.1869(6) Å, b = 13.1017(12) Å, c = 15.5126(12) Å, V = 1901.1(3) Å3, z = 2, F(000) = 716, CAD4 Enraf Nonius, Cu-Kα, SIR-92, SHELXL-97. Further details of the crystal structure analysis are available on request from the Cambridge Crystallographic Data Centre quoting the deposit number CCDC 229786.
16Compound 10: [α]D 25 +11.1 (c 1, EtOH). 1H NMR (200 MHz, DMSO): δ = 9.07 (br s, 1 H, NH), 8.68 (1 H, NH), 3.15-2.80 (m, 2 H, H-1, H-6), 1.90-1.00 (m, 13 H, CH2, CH3), 0.87 [t, 3 H, J = 7.1 Hz, (CH2)2CH 3] ppm. 13C NMR (50.3 MHz, DMSO): δ = 55.98, 52.52 (C-2, C-6), 34.82, 29.78, 27.05, 22.01, 18.75, 17.86 (CH2, CH3), 13.68 [(CH2)2 CH3] ppm.