Subscribe to RSS
DOI: 10.1055/s-2004-817797
Georg Thieme Verlag Stuttgart · New York
Calystegines in Calystegia sepium do not Inhibit Fungal Growth and Invertase Activity but Interact with Plant Invertase
Publication History
Publication Date:
26 March 2004 (online)
![](https://www.thieme-connect.de/media/plantbiology/200402/lookinside/thumbnails/10.1055-s-2004-817797-1.jpg)
Abstract
Calystegines are alkaloidal glycosidase inhibitors. They accumulate predominantly in young and meristemic parts of Calystegia sepium (Convolvulaceae). C. sepium, bindweed, infests meadows and cereal fields and is difficult to control chemically. Fungal pathogens against C. sepium are established as mycoherbicides. Stagonospora convolvuli LA39 attacks C. sepium and does not affect crop plants, but young plants of C. sepium are less susceptible to the fungus. The interaction of Stagonospora convolvuli with calystegines was investigated. Further, endophytic fungi of several classes were isolated from wild-grown Calystegia sepium leaves, and selected strains were tested for interaction with calystegines. Fungal growth on agar containing calystegines was not affected considerably. Plants in climate chambers were infected with an endophyte, Phomopsis, and with the fungal pathogen, Stagonospora convolvuli. Calystegine levels were measured in infected and non-infected plant tissues. Accumulation depended on developmental stage of the plant tissue and was not influenced by infection. Acid invertase was measured from fungal mycelia and from infected and non-infected plant tissues. Fungal acid invertase activity was not inhibited by 10 mM calystegine B2, while invertase from C. sepium leaves was inhibited. It is concluded that calystegines do not inhibit fungal development and sucrose consumption under the conditions of the present investigation, but may act by redirection of plant carbohydrate metabolism.
Key words
Fungal endophyte - calystegine - invertase inhibition - Stagonospora - Phomopsis.
References
- 1 Asano N., Kato A., Miyauchi M., Kizu H., Tomimori T., Matsui K., Nash R. J., Molyneux R. J.. Specific alpha-galactosidase inhibitors, N-methylcalystegines - structure/activity relationships of calystegines from Lycium chinense. . Eur. J. Biochem.. (1997); 248 296-303
- 2 Asano N., Nash R. J., Molyneux R. J., Fleet G. W.. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron. (2000); 11 1645-1680
- 3 Asano N., Yokoyama K., Sakurai M., Ikeda K., Kizu H., Kato A., Arisawa M., Höke D., Dräger B., Watson A. A., Nash R. J.. Dihydroxynortropane alkaloids from calystegine-producing plants. Phytochemistry. (2001); 57 721-726
- 4 Benhamou N., Grenier J., Chrispeels M. J.. Accumulation of β-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol.. (1991); 97 739-750
- 5 Carroll G.. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. (1988); 69 2-9
- 6 Clay K., Holah J.. Fungal endophyte symbiosis and plant diversity in successional fields. Science. (1999); 285 1742-1744
- 7 Défago G., Ammon H.-U., Cagán L., Draeger B., Greaves M. P., Guntli D., Hoeke D., Klimes L., Lawrie J., Moënne-Loccoz Y., Nicolet B., Pfirter H. A., Tabacchi R.. Towards the biocontrol of bindweeds with a mycoherbicide. BioControl. (2001); 42 157-173
- 8 Dräger B., Van-Almssick A., Mrachatz G.. Distribution of calystegines in several Solanaceae. Planta Med.. (1995); 61 577-579
- 9 Faeth S. H.. Are endophytic fungi defensive plant mutualists?. Oikos. (2002); 98 25-36
-
10 Fellows L. E., Kite G. C., Nash R. J., Simmonds M. S. J., Scofield A. M..
Distribution and biological activity of alkaloid glycosidase inhibitors from plants. Mengel, K. and Pilbeam, J. B., eds. Nitrogen Metabolism in Plants, Proceedings of the Phytochemical Society of Europe, Vol. 33. Oxford; Clarendon Press (1992): 271-282 - 11 Goldmann A., Milat M. L., Ducrot P. H., Lallemand J. Y., Maille M., Lepingle A., Charpin I., Tepfer D.. Tropane derivatives from Calystegia sepium. . Phytochemistry. (1990); 29 2125-2128
- 12 Greiner S., Koster U., Lauer K., Rosenkranz H., Vogel R., Rausch T.. Plant invertase inhibitors: expression in cell culture and during plant development. Austr. J. Plant Physiol.. (2000); 27 807-814
- 13 Guntli D., Heeb M., Moenne-Loccoz Y., Defago G.. Contribution of calystegine catabolic plasmid to competitive colonization of the rhizosphere of calystegine-producing plants by Sinorhizobium meliloti Rm41. Mol. Ecol.. (1999 a); 8 855-863
- 14 Guntli D., Burgos S., Moënne-Loccoz Y., Defago G.. Calystegine degradation capacities of microbial rhizosphere communities of Zea mays (calystegine-negative) and Calystegia sepium (calystegine-positive). FEMS Microbiol. Ecol.. (1999 b); 28 75-84
- 15 Guntli D., Pfirter H. A., Moenne L. Y., Defago G.. Stagonospora convolvuli LA39 for biocontrol of field bindweed infesting cotoneaster in a cemetery. Hortscience. (1998); 33 860-861
- 16 Gupta A. K., Kaur N., Singh D. P., Gill A., Singh R.. Inulin is a better inducer of acid invertase than sucrose. Phytochemistry. (1994); 37 125-126
- 17 Hartmann T.. Chemical ecology of pyrrolizidine alkaloids. Planta. (1999); 207 483-495
- 18 Isla M. I., Ordonez R. M., Moreno M. I. N., Sampietro A. R., Vattuone M. A.. Inhibition of hydrolytic enzyme activities and plant pathogen growth by invertase inhibitors. J. Enzym. Inhib.. (2002); 17 37-43
- 19 Miura I., Kamakura T., Maeno S., Hayashi S., Yamaguchi I.. Inhibition of enzyme secretion in plant pathogens by mepanipyrim, a novel fungicide. Pesticide Biochem. and Physiol.. (1993); 48 222-228
- 20 Morin L., Watson A. K., Reeleder R. D.. Efficacy of Phomopsis convolvulus for control of field bindweed Convolvulus arvensis. Weed Science. (1989); 37 830-835
- 21 Ordonez R. M., Isla M. I., Vattuone M. A., Sampietro A. R.. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits. J. Enzym. Inhib.. (2000); 15 583-596
- 22 Ormeno-Nunez J., Reeleder R. D., Watson A. K.. A foliar disease of field bindweed Convolvulus arvensis caused by Phomopsis convolvulus. . Plant Disease. (1988); 72 338-342
- 23 Pfirter H. H., Ammon H. U., Guntli D., Greaves M. P., Défago G.. Towards the management of field bindweed (Convolvulus arvensis) and hedge bindweed (Calystegia sepium) with fungal pathogens and cover crops. Integr. Pest Management Rev.. (1997); 2 61-69
- 24 Pfirter H. A., Défago G.. The potential of Stagonospora sp. as a mycoherbicide for field bindweed. BioControl. (1998); 8 93-101
- 25 Rothe G., Dräger B.. Tropane alkaloids - metabolic response to carbohydrate signal in root cultures of Atropa belladonna. . Plant Sci.. (2002); 163 979-985
- 26 Rothe G., Garske U., Dräger B.. Calystegines in root cultures of Atropa belladonna respond to sucrose, not to elicitation. Plant Sci.. (2001); 160 1043-1053
- 27 Ruiz E., Ruffner H. P.. Immunodetection of Botrytis-specific invertase in infected grapes. J. Phytopathol.. (2002); 150 76-85
- 28 Saikkonen K., Faeth S. H., Helander M., Sullivan T. J.. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. System.. (1998); 29 319-343
- 29 Schimming T., Tofern B., Mann P., Richter A., Jenett S. K., Dräger B., Asano N., Gupta M. P., Correa M. D., Eich E.. Distribution and taxonomic significance of calystegines in the Convolvulaceae. Phytochemistry. (1998); 49 1989-1995
- 30 Scholl Y., Hoeke D., Draeger B.. Calystegines in Calystegia sepium derive from the tropane alkaloid pathway. Phytochemistry. (2001); 58 883-889
- 31 Schulz B., Boyle C., Draeger S., Roemmert A.-K., Krohn K.. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res.. (2002); 106 996-1004
- 32 Sturm A.. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol.. (1999 a); 121 1-7
- 33 Sturm A.. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol.. (1999 b); 121 1-7
- 34 Sturm A., Chrispeels M. J.. cDNA cloning of carrot extracellular β-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell. (1990); 2 1107-1119
- 35 Tang X., Rolfe S. A., Scholes J. D.. The effect of Albugo candida (white blister rust) on the photosynthetic and carbohydrate metabolism of leaves of Arabidopsis thaliana. . Plant Cell and Environm.. (1996); 19 967-975
- 36 Tepfer D., Goldmann A., Pamboukdjian N., Maille M., Lepingle A., Chevalier D., Denarie J., Rosenberg C.. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium. J. Bacteriol.. (1988); 170 1153-1161
- 37 Vainstein M. H., Peberdy J. F.. Regulation of invertase in Aspergillus nidulans: effect of different carbon sources. J. Gen. Microbiol.. (1991); 137 315-321
B. Dräger
Institute of Pharmaceutical Biology
Faculty of Pharmacy
Martin-Luther-Universität Halle-Wittenberg
Hoher Weg 8
06120 Halle
Germany
Email: draeger@pharmazie.uni-halle.de
Section Editor: C. M. J. Pieterse