Plant Biol (Stuttg) 2004; 6(2): 128-139
DOI: 10.1055/s-2004-817837
Original Paper

Georg Thieme Verlag Stuttgart · New York

Geographic Distribution and Recombination of Genomic Fragments on the Short Arm of Chromosome 2 of Arabidopsis thaliana

H. Schmuths1 , M. H. Hoffmann2 , K. Bachmann1
  • 1Department of Taxonomy, Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
  • 2Present address: Institute of Geobotany and Botanical Gardens, Halle, Germany
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. März 2004 (online)

Abstract

Range expansion from Pleistocene refugia and anthropogenic influences contribute to the present distribution pattern of Arabidopsis thaliana. We scored a genome-wide set of CAPSs and found two markers with an east-west geographic distribution across the Eurasian range of the species. Regions around the two SNPs were sequenced in 98 accessions, including newly collected plants from Middle Asia and Western Siberia. These regions correspond to a gene (∼ 1500 bp) and a non-coding region (∼ 500 bp) 300 kbp apart on chromosome 2. Nucleotide diversities, π, of the two sequenced fragments were 0.0032 and 0.0130. The haplotypes of both sequences belonged to one of two groups: a rather uniform “Asian” and a more variable “European” haplotype group, on the basis of non-disjunct clusters of SNPs. Recombination between “Asian” and “European” haplotypes occurs where they meet. Especially in the “European” haplotype, many rare SNP variants representing independent mutations are scattered among the shared haplotype-specific SNPs. This agrees with previous suggestions of two large haplotype groups in A. thaliana and the post-glacial colonization of central Europe from the east and the west. A clear correlation between climatic factors and the haplotype distribution may reflect the dispersal history rather than local climate adaptation. The pattern of SNP variation within the contiguous sequences explains why only a minority of SNPs selected across the genome show evidence of this geographic pattern.

References

  • 1 Abbott R. J., Gomes M. F.. Population genetic structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh.  Hederity. (1989);  62 411-418
  • 2 Aguadé M.. Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3 H genes, in Arabidopsis thaliana. .  Molecular Biology and Evolution. (2001);  18 1-9
  • 3 Akashi H.. Within- and between-species DNA sequence variation and the “footprint” of natural selection.  Gene. (1999);  238 39-51
  • 4 Alonso-Blanco C., Koornneef H.. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics.  Trends in Plant Science. (2000);  5 22-29
  • 5 Avise J. C.. Phylogeography: The History and Formation of Species. Cambridge; Havard University Press (2000)
  • 6 Bandelt H.-J., Dress A. W. M.. A canonical decomposition theory for metrics on a finite set.  Advances in Mathematics. (1992);  92 47-105
  • 7 Bergelson J., Stahl E., Dudek S., Kreitman M.. Genetic variation within and among populations of Arabidopsis thaliana ecotypes.  Genetics. (1998);  148 1311-1323
  • 8 Breyne P., Rombaut D., van Gysel A., van Montagu M., Gerats T.. AFLP analysis of genetic diversity within and between Arabidopsis thaliana ecotypes.  Molecular and General Genetics. (1999);  261 627-634
  • 9 Caicedo A. L., Schaal B. A., Kunkel B. N.. Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. .  Proceedings of the National Academy of Sciences of the USA. (1999);  96 302-306
  • 10 Casgrain P., Legendre P.. The R PACKAGE for multivariate and spatial analysis, version 4.0. University of Montreal, Montreal: User's manual. Department of Biological Sciences. (1999)
  • 11 Clement M., Posada D., Crandall K. A.. TCS: a computer program to estimate gene genealogies.  Molecular Ecology. (2000);  9 1657-1660
  • 12 Comps B., Gömöry D., Letouzey J., Thiebaut B., Petit R. J.. Diverging trends between heterozygosity and allelic richness during postglacial colonisation in the European beech.  Genetics. (2001);  157 389-397
  • 13 Erschadi S., Haberer G., Schöninger M., Torres-Ruiz R. A.. Estimating genetic diversity of Arabidopsis thaliana ecotypes with amplified fragment length polymorphisms (AFLP).  Theoretical and Applied Genetics. (2000);  100 633-640
  • 14 ESRI - Environmental Systems Research Institute, Inc. .Arc/Info™, Redlands. (1992)
  • 15 Hagenblad J., Nordborg M.. Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. .  Genetics. (2002);  161 289-298
  • 16 Hall T. A.. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.  Nucleic Acid Symposium Series. (1999);  41 95-98
  • 17 Hanfstingl U., Berry A., Kellogg E. A., Costa III., J. T., Rüdiger W., Ausubel F. M.. Haplotypic divergence coupled with lack of diversity at the Arabidopsis thaliana alcohol dehydrogenase locus: roles for both balancing and directional selection?.  Genetics. (1994);  138 811-828
  • 18 Haubold B., Kroymann J., Ratzka A., Mitchell-Olds T., Wiehe T.. Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. .  Genetics. (2002);  161 1269-1278
  • 19 Hauser M.-T., Harr B., Schlötterer C.. Trichrome distribution in Arabidopsis thaliana and its close relative Arabis lyrata: molecular analysis of the candidate gene GLABROUS1. .  Molecular Biology and Evolution. (2001);  18 1754-1763
  • 20 Hein J.. Reconstructing evolution of sequences subject to recombination using parsimony.  Mathematical Biosciences. (1990);  98 185-200
  • 21 Hein J.. A heuristic method to reconstruct the history of sequences subject to recombination.  Journal of Molecular Evolution. (1993);  36 396-406
  • 22 Hewitt G. M.. Post-glacial re-colonization of European biota.  Biological Journal of the Linnaean Society. (1999);  68 87-112
  • 23 Hoffmann M. H.. Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae).  Journal of Biogeography. (2002);  29 125-134
  • 24 Hoffmann M. H., Glaß A. S., Tomiuk J., Schmuths H., Fritsch R. M., Bachmann K.. Analysis of molecular data of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) with Geographical Information System (GIS).  Molecular Ecology. (2003);  12 1007-1019
  • 25 Hudson R. R., Kaplan N. L.. Statistical properties of the number of recombination events in the history of a sample of DNA sequences.  Genetics. (1985);  111 147-164
  • 26 Huson D. H.. SplitsTree: analyzing and visualizing evolutionary data.  Bioinformatics. (1998);  14 68-73
  • 27 Innan H., Tajima F., Terauchi R., Miyshita N. T.. Intragenic recombination in the Adh locus of the wild plant Arabidopsis thaliana. .  Genetics. (1996);  143 1761-1770
  • 28 Innan H., Terauchi R., Miyashita N. T.. Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. .  Genetics. (1997);  146 1441-1452
  • 29 Jander G., Norris S., Rounsley S., Bush D., Levin I., Last R.. Arabidopsis map-based cloning in the post-genome era.  Plant Physiology. (2002);  129 440-450
  • 30 Kawabe A., Innan H., Terauchi R., Miyashita N. T.. Nucleotide polymorphism in the acidic chitinase locus (ChiA) region of the wild plant Arabidopsis thaliana. .  Molecular Biology and Evolution. (1997);  14 1303-1315
  • 31 Kawabe A., Miyashita N. T.. DNA variation in the chitinase locus (ChiB) region of the wild plant Arabidopsis thaliana. .  Genetics. (1999);  153 1445-1453
  • 32 King G., Nienhuis J., Hussey C.. Genetic similarity among ecotypes of Arabidopsis thaliana estimated by analysis of restriction fragment length polymorphisms.  Theoretical and Applied Genetics. (1993);  86 1028-1032
  • 33 Konnert M., Bergmann F.. The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history.  Plant Systematics and Evolution. (1995);  196 19-30
  • 34 Kuittinen H., Aguadé M.. Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. .  Genetics. (2000);  155 863-872
  • 35 Kuittinen H., Salguero D., Aguadé M.. Parallel patterns of sequence variation within in between populations at three loci of Arabidopsis thaliana. .  Molecular Biology and Evolution. (2002);  19 2030-2034
  • 36 Lin J.-Z., Morrell P. L., Clegg M. T.. The influence of linkage and inbreeding on patterns of nucleotide sequence diversity at duplicate alcohol dehydrogenase loci in wild barley (Hordeum vulgare ssp. spontaneum). .  Genetics. (2002);  162 2007-2015
  • 37 Lockhart P. J., Steel A. W. D., Waddell P. J., Penny D.. Evolution of chlorophyll and bacteriophyll: the problem of invariant sites in sequence analysis.  Proceedings of the National Academy of Sciences of the USA. (1996);  93 1930-1934
  • 38 Loridon K., Cournoyer B., Goubely C., Depeiges A., Picard G.. Length polymorphism and allele structure of trinucleotide microsatellites in natural accessions of Arabidopsis thaliana. .  Theoretical Applied Genetics. (1998);  97 591-604
  • 39 Mantel N.. The detection of disease clustering and gerneralized regression approach.  Cancer Research. (1967);  27 209-220
  • 40 Maynard Smith J.. The detection and measurement of recombination from sequence data.  Genetics. (1999);  153 1021-1027
  • 41 Mitchell-Olds T.. Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution.  Trends in Ecology. (2001);  16 693-700
  • 42 Miyashita N. T., Kawabe A., Innan H.. DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis.  Genetics. (1999);  152 1723-1731
  • 43 Myers S. R., Griffiths R. C.. Bounds on the minimum number of recombination events in a sample history.  Genetics. (2003);  163 375-394
  • 44 Nei M.. Molecular Evolutionary Genetics. New York; Columbia University Press (1987)
  • 45 Nordborg M., Tavaré S.. Linkage disequilibrium: what history has to tell us.  Trends in Genetics. (2002);  18 83-90
  • 46 Oden N. L., Sokal R. F.. Directional autocorrelation: an extension of spatial autocorrelograms to two dimensions.  Systematic Zoology. (1986);  35 608-617
  • 47 Posada D.. Evaluation of methods for detecting recombination from DNA sequences: empirical data.  Molecular Biological Evolution. (2002);  19 708-717
  • 48 Posada D., Crandall K. A., Holmes E. C.. Recombination in evolutionary genomics.  Annual Review of Genetics. (2002);  36 75-97
  • 49 Price R. A., Al-Shebaz I. A., Palmer J. D.. Systematic relationships of Arabidopsis: a molecular and morphological approach. Meyerowitz, E., and Somerville, C., eds. Arabidopsis . Cold Spring Habor, NY; Cold Spring Habor Press (1994): 7-19
  • 50 Purugganan M. D., Suddith J. I.. Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: Nonneutral evolution and naturally occurring variation in floral homeotic function.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 8130-8134
  • 51 Purugganan M. D., Suddith J. I.. Molecular population genetics of floral homeotic loci: departures from equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. .  Genetics. (1999);  151 839-848
  • 53 Rozas J., Rozas R.. DNASP version3: an integrated program for molecular population genetics and molecular evolution analysis.  Bioinformatics. (1999);  15 174-175
  • 54 Sachs L.. Angewandte Statistik - Anwendung klassischer Methoden, 8. Auflage. Berlin, Heidelberg; Springer Verlag (1997)
  • 55 Schmid K. J., Rosleff Sörensen T., Stracke R., Törjék O., Altmann T., Mitchell-Olds T., Weisshaar B.. Large-scale identification and analysis of genome-wide single-nucleotide-polymorphisms for mapping in Arabidopsis thaliana. .  Genome Research. (2003);  13 1250-1257
  • 56 Sharbel T. F., Haubold B., Mitchell-Olds T.. Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe.  Molecular Ecology. (2000);  9 2109-2118
  • 57 SPSS for Windows. SPSS Inc. (1999)
  • 58 Stahl E. A., Dwyer G., Mauricio R., Kreitman M., Bergelson J.. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. .  Nature. (1999);  400 667-671
  • 59 Stehlik I., Blattner F. R., Holderegger R.. Nunatak survival of the high Alpine plant Eritrichium nanum (L.) Gaudin in the central Alps during the ice ages.  Molecular Ecology. (2002);  11 2027-2036
  • 60 Tajima F.. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.  Genetics. (1989);  123 585-595
  • 61 Templeton A. R., Crandall K. A., Sing C. F.. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation.  Genetics. (1992);  132 619-633
  • 62 Ullrich H., Lättig K., Brennicke A., Knoop V.. Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes.  Plant Molecular Biology. (1997);  33 37-45
  • 63 Wares J. P.. Community genetics in the Northwestern Atlantic interdial.  Molecular Ecology. (2002);  11 1131-1144

H. Schmuths

Department of Taxonomy
Institute of Plant Genetics and Crop Plant Research

Corrensstraße 3

06466 Gatersleben

Germany

eMail: schmuths@ipk-gatersleben.de

Section Editor: M. Koornneef