RSS-Feed abonnieren
DOI: 10.1055/s-2004-820034
Application of Microwave Irradiation in the Synthesis of Carbohydrates [1]
Publikationsverlauf
Publikationsdatum:
10. März 2004 (online)
Abstract
Microwave activation as a non-conventional energy source has become a very popular and useful technology in organic chemistry. The heating effect utilized in microwave assisted organic transformations is due mainly to dielectric polarization, although conduction loses can also be important particularly at higher temperatures. Only dipolar and interfacial polarization are important factors in heating effects associated with microwave irradiation. The short reaction times and expanded reaction range offered by microwave assisted organic syntheses are suited to the increased demand of the chemical industry. There are two types of microwave reactions, solvent-free and solution-phase. Although microwave-assisted reactions are widely applied in other domains of organic synthesis, their use in the area of carbohydrates has been limited. The purpose of this review is to highlight the applications of microwave irradiation in the synthesis of carbohydrates.
Key words
carbohydrate - synthesis - microwave irradiation - oligosaccharides
-
1a
DRL Publication No. 345-A.
-
1b
Presented in part in the XVIII th National Carbohydrate Conference, Calcutta, India, November 5-7, 2003.
- 2
Gedye RN.Smith F.Westaway K.Ali H.Baldisera L.Laberge L.Rousell J. Tetrahedron Lett. 1986, 27: 279 - 3
Lidström P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 57: 9225 - 4
Perreux L.Loupy A. Tetrahedron 2001, 57: 9199 - 5
Larhed M.Hallberg A. Drug Discovery Today 2001, 6: 406 - 6
Loupy A.Petit A.Hamelin J.Texier-Boullet F.Jacquault P.Mathé D. Synthesis 1998, 1213 - 7
Caddick S. Tetrahedron 1995, 51: 10403 -
8a
Mingos DMP.Baghurst DR. In Microwave Enhanced ChemistryKingston HM.Haswell SJ. American Chemical Society; Washington DC: 1997. p.4-7 -
8b
Zenatti P.Forgeat M.Marchand C.Rabette P. Technologie et stratégie Bulletin de l’OTS 1992, 55: 4 - 9
Limousin C.Cléophax J.Petit A.Loupy A.Lukacs G. J. Carbohydr. Chem. 1997, 16: 327 -
10a
Ferrier RJ.Prasad N. J. Chem. Soc. C 1969, 570 -
10b
Ferrier RJ.Ciment DM. J. Chem. Soc. C 1966, 441 -
10c
Ferrier RJ.Prasad N. J. Chem. Soc. C 1969, 581 - 11
Williams NR.Wander JD. The Carbohydrates. Chemistry and Biochemistry Academic Press; New York: 1980. p.761-798 - 12
Sowmya S.Balasubramanian KK. Synth. Commun. 1994, 24: 2097 - 13
Lutz RP. Chem. Rev. 1984, 84: 205 -
14a
Giguere RJ.Bray TL.Duncan SM.Majetich G. Tetrahedron Lett. 1986, 27: 4945 -
14b
Abramovitch RA. Org. Prep. Proced. Int. 1991, 23: 683 -
14c
Srikrishna A.Nagaraju S. J. Chem. Soc., Perkin Trans. 1 1992, 311 - 15
de Oliveira RN.de Freitas Filho JR.Srivastava RM. Tetrahedron Lett. 2002, 43: 2141 - 16
Gelo-Pujic M.Guibé-Jampel E.Loupy A.Trincone A. J. Chem. Soc., Perkin Trans. 1 1997, 1001 - 17
Lewis MD.Cha JK.Kishi Y. J. Am. Chem. Soc. 1982, 104: 4976 - 18
Paterson L.Keown LE. Tetrahedron Lett. 1997, 38: 5727 - 19
Horita K.Sakurai Y.Nagasawa M.Hachiya S.Yonemitsu O. Synlett 1994, 43 - 20
Suhadolnik RJ. Nucleoside Antibiotics Wiley Interscience; New York: 1970. - 21
Weatherman RV.Mortell KH.Chervenak M.Kiessling LL.Toone E. J. Biochem. 1996, 35: 3619 - 22
Csiba M.Cleophax J.Loupy A.Malthête J.Gero SD. Tetrahedron Lett. 1993, 34: 1787 - 23
Bailliez V.de Figueiredo RM.Olesker A.Cléophax J. Synthesis 2003, 1015 - 24
Ley SV.Mynett DM. Synlett 1993, 793 - 25
Gelo-Pujic M.Guibé-Jampel E.Loupy A.Galema SA.Mathé D. J. Chem. Soc., Perkin Trans. 1 1996, 2777 -
26a
Granger DL.Yamamoto KI.Ribi E. J. Immunol. 1976, 116: 482 -
26b
Noll H.Bloch H.Asselineau J.Lederer E. Biochem. Biophys. Acta 1956, 20: 299 - 27
Nüchter M.Ondruschka B.Lautenschläger W. Synth. Commun. 2001, 31: 1277 - 28
Koenigs W.Knorr E. Ber. Dtsch. Chem. Ges. 1901, 34: 957 - 29
Shanmugasundaram B.Bose AK.Balasubramanian KK. Tetrahedron Lett. 2002, 43: 6795 - 30
Das SK.Reddy KA.Roy J. Synlett 2003, 1607 - 31
Chang M.Meyers HV.Nakanishi K.Ojika M.Park JH.Park HM.Takeda R.Vazquez JT.Wiesler WT. Pure Appl. Chem. 1989, 61: 1193 - 32
Mohan H.Gemma E.Ruda K.Oscarson S. Synlett 2003, 1255 - 33
Mathew F.Jayaprakash KN.Fraser-Reid B.Mathew J.Scicinski J. Tetrahedron Lett. 2003, 44: 9051 -
34a
Corey EJ.Fuchs PL. Tetrahedron Lett. 1972, 3769 -
34b
Suda M.Fukushima A. Tetrahedron Lett. 1981, 22: 759 - 35
de Figueiredo RM.Bailliez V.Dubreuil D.Olesker A.Cleophax J. Synthesis 2003, 2831 - 36
Lakhrissi Y.Taillefumier C.Lakhrissi M.Chapleur Y. Tetrahedron: Asymmetry 2000, 11: 417 - 37
Das SK.Reddy KA.Abbineni C.Roy J.Rao KVLN.Sachwani RH.Iqbal J. Tetrahedron Lett. 2003, 44: 4507 - 38
Ghosh R.De D.Shown B.Maiti SB. Carbohydr. Res. 1999, 321: 1 ; and references therein. - 39
Straathof AJJ.van Bekkum H.Kieboom APG. Recl. Trav. Chim. Pays-Bas 1988, 107: 647 - 40
Baptistella LHB.Neto AZ.Onaga H.Godoi EAM. Tetrahedron Lett. 1993, 34: 8407 - 41
Morcuende A.Valverde S.Herradón B. Synlett 1994, 89 - 42
Söderberg E.Westman J.Oscarson S. J. Carbohydr. Chem. 2001, 20: 397 - 43
Salanski P.Descotes G.Bouchu A.Queneau Y. J. Carbohydr. Chem. 1987, 17: 129 - 44
Limousin C.Olesker A.Cléophax J.Petit A.Loupy A.Lukacs G. Carbohydr. Res. 1998, 312: 23 - 45
Chirakal R.Mccarry B.Lonergan M.Firnau G.Garnett S. Appl. Radiat. Isot. 1995, 46: 149 - 46
Limousin C.Cléophax J.Loupy A.Petit A. Tetrahedron 1998, 54: 13567 - 47
Yu B.Xie J.Deng S.Hui Y. J. Am. Chem. Soc. 1999, 121: 12196 - 49
Singh V.Tiwari A.Tripathi DN.Malviya T. Tetrahedron Lett. 2003, 44: 7295 - 50
Shieh W.-C.Dell S.Repiè O. Tetrahedron Lett. 2002, 43: 5607 - 52
Jadav JS.Reddy BVS.Rao KV.Raj KS.Prasad AR.Kumar SK.Kunwar AC.Jayaprakash P.Jagannath B. Angew. Chem. Int. Ed. 2003, 42: 5198 - 53
Bose AK.Banik BK.Mathur C.Wagle DR.Manhas MS. Tetrahedron 2000, 56: 5603
References
Das, S. K.; Reddy, K. A.; Krovvidi, V. L. N. R. unpublished results.
51Das, S. K.; Roy, J. unpublished results.