References
<A NAME="RU02604ST-1">1</A>
Present address: School of Pharmaceutical Sciences, Kitasato University, Shirokane,
Minato-ku, Tokyo 108-8641, Japan.
Reviews:
<A NAME="RU02604ST-2A">2a</A>
Schmidt RR.
Angew. Chem., Int. Ed. Engl.
1986,
25:
212
<A NAME="RU02604ST-2B">2b</A>
Toshima K.
Tatsuta K.
Chem. Rev.
1993,
93:
1503
<A NAME="RU02604ST-2C">2c</A>
Boons G.-J.
Tetrahedron
1996,
52:
1095
<A NAME="RU02604ST-2D">2d</A>
Schmidt RR.
Comprehensive Organic Chemistry
Vol. 6:
Pergamon Press;
Oxford:
1991.
p.33-64
<A NAME="RU02604ST-3A">3a</A>
Hashimoto S.
Hayashi M.
Noyori R.
Tetrahedron Lett.
1984,
25:
1379
<A NAME="RU02604ST-3B">3b</A>
Mukaiyama T.
Shimpuku T.
Takashima T.
Kobayashi S.
Chem. Lett.
1989,
145
<A NAME="RU02604ST-3C">3c</A>
Mukaiyama T.
Takashima T.
Katsurada M.
Aizawa H.
Chem. Lett.
1991,
533
<A NAME="RU02604ST-3D">3d</A>
Mukaiyama T.
Katsurada M.
Takashima T.
Chem. Lett.
1991,
985
<A NAME="RU02604ST-3E">3e</A>
Charette AB.
Marcoux J.-F.
Côté B.
Tetrahedron Lett.
1991,
32:
7215
<A NAME="RU02604ST-3F">3f</A>
Mukaiyama T.
Matsubara K.
Chem. Lett.
1992,
1041
<A NAME="RU02604ST-3G">3g</A>
Matsubara K.
Sasaki T.
Mukaiyama T.
Chem. Lett.
1993,
1373
<A NAME="RU02604ST-3H">3h</A>
Matsubara K.
Mukaiyama T.
Chem. Lett.
1993,
2145
<A NAME="RU02604ST-3I">3i</A>
Shinomura N.
Saitoh M.
Mukaiyama T.
Chem. Lett.
1994,
433
<A NAME="RU02604ST-3J">3j</A>
Mukaiyama T.
Ishikawa T.
Uchiro H.
Chem. Lett.
1997,
389
<A NAME="RU02604ST-4">4</A>
Nashed EM.
Glaudemans CPJ.
J. Org. Chem.
1989,
54:
6116
<A NAME="RU02604ST-5A">5a</A>
Bochkov AF.
Kochetkov NK.
Carbohydr. Res.
1975,
39:
355
<A NAME="RU02604ST-5B">5b</A>
Kochetkov NK.
Backinowsky LV.
Tsvetkov YE.
Tetrahedron Lett.
1977,
3681
<A NAME="RU02604ST-5C">5c</A>
Betaneli VI.
Ovchinnikov MV.
Backinowsky LV.
Kochetkov NK.
Carbohydr. Res.
1979,
76:
252
<A NAME="RU02604ST-5D">5d</A>
Kochetkov NK.
Klimov EM.
Malysheva NN.
Tetrahedron Lett.
1989,
30:
5459
<A NAME="RU02604ST-5E">5e</A>
Kochetkov NK.
Nepogod’ev SA.
Backinowsky LV.
Tetrahedron
1990,
46:
139
<A NAME="RU02604ST-5F">5f</A>
Kochetkov NK.
Klimov EM.
Malysheva NN.
Demchenko AV.
Carbohydr. Res.
1991,
212:
77
<A NAME="RU02604ST-5G">5g</A>
Kochetkov NK.
Malysheva NN.
Klimov EM.
Demchenko AV.
Tetrahedron Lett.
1992,
33:
381
<A NAME="RU02604ST-6A">6a</A>
Iimori T.
Shibazaki T.
Ikegami S.
Tetrahedron Lett.
1996,
37:
2267
<A NAME="RU02604ST-6B">6b</A>
Iimori T.
Azumaya I.
Shibazaki T.
Ikegami S.
Heterocycles
1997,
46:
221
<A NAME="RU02604ST-6C">6c</A>
Azumaya I.
Niwa T.
Kotani M.
Iimori T.
Ikegami S.
Tetrahedron Lett.
1999,
40:
4683
<A NAME="RU02604ST-7A">7a</A>
Inaba S.
Yamada M.
Yoshino T.
Ishido Y.
J. Am. Chem. Soc.
1973,
95:
2062
<A NAME="RU02604ST-7B">7b</A>
Ishido Y.
Inaba S.
Matsuno A.
Yoshino T.
Umezawa H.
J. Chem. Soc., Perkin Trans. 1
1977,
1382
<A NAME="RU02604ST-8">8</A>
Scheffler G.
Schmidt RR.
Tetrahedron Lett.
1997,
38:
2943
<A NAME="RU02604ST-9A">9a</A>
Kobayashi S.
Synlett
1994,
689 ; and references therein
<A NAME="RU02604ST-9B">9b</A>
Kobayashi S.
Eur. J. Org. Chem.
1999,
15 ; and references therein
<A NAME="RU02604ST-10">10</A>
Kobayashi S.
Hachiya I.
Araki M.
Ishitani H.
Tetrahedron Lett.
1993,
34:
3755
<A NAME="RU02604ST-11A">11a</A>
Kanie O.
Ito Y.
Ogawa T.
J. Am. Chem. Soc.
1994,
116:
12073
<A NAME="RU02604ST-11B">11b</A>
Kim W.-S.
Hosono S.
Sasai H.
Shibasaki M.
Tetrahedron Lett.
1995,
36:
4443
<A NAME="RU02604ST-11C">11c</A>
Hosono S.
Kim W.-S.
Sasai H.
Shibasaki M.
J. Org. Chem.
1995,
60:
4
<A NAME="RU02604ST-11D">11d</A>
Kim W.-S.
Sasai H.
Shibasaki M.
Tetrahedron Lett.
1996,
37:
7797
<A NAME="RU02604ST-11E">11e</A>
Yamada H.
Imamura K.
Takahashi T.
Tetrahedron Lett.
1997,
38:
391
<A NAME="RU02604ST-11F">11f</A>
Shimizu M.
Togo H.
Yokoyama M.
Synthesis
1998,
799 ; and references therein
<A NAME="RU02604ST-12">12</A>
Typical Experimental Procedure for the Decarboxylative Glycosylation: To a solution of a mixed β-carbonate (0.1 mmol) in CH2Cl2 (1 mL) with stirring at ambient temperature was added a metal triflate. After the
reaction was completed, a saturated solution of NaHCO3 was added and the mixture was extracted with EtOAc. The organic layer was washed
with brine twice, dried over Na2SO4, filtered, and evaporated. The crude product was purified by silica gel column chromatography
to give the corresponding glycosides.
<A NAME="RU02604ST-13">13</A>
Selected analytical data for the compounds 7b, 7c, 8a and 8d are shown. All the other glycosides are also fully characterized.
Compound 7b: [α]D
22 +10.9 (c 0.50, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.11 (s, 9 H), 1.14 (s, 9 H), 1.15 (s, 9 H), 1.24 (s, 9 H), 3.33 (dd, J = 8.9 Hz, 10.1 Hz, 1 H), 3.37 (s, 3 H), 3.47 (dd, J = 3.7 Hz, 9.8 Hz, 1 H), 3.59 (dd, J = 6.4 Hz, 10.7 Hz, 1 H), 3.82 (ddd, J = 1.8 Hz, 6.1 Hz, 9.8 Hz, 1 H), 3.89 (m, 1 H), 3.95-4.04 (m, 3 H), 4.11 (dd, J = 6.4 Hz, 11.0 Hz, 1 H), 4.45 (anomeric, d, J = 7.9 Hz, 1 H), 4.54 (d, J = 3.7 Hz, 1 H), 4.57 (d, J = 11.3 Hz, 1 H), 4.65 (d, J = 12.2 Hz, 1 H), 4.77 (d, J = 11.9 Hz, 1 H), 4.79 (d, J = 10.7 Hz, 1 H), 4.87 (d, J = 11.0 Hz, 1 H), 4.98 (d, J = 11.0 Hz, 1 H), 5.05 (dd, J = 3.4 Hz, 10.4 Hz, 1 H), 5.23 (dd, J = 7.9 Hz, 10.4 Hz, 1 H), 5.37 (dd, J = 0.9 Hz, 3.4 Hz, 1 H), 7.25-7.36 (m, 15 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 27.0, 27.1, 27.1, 38.7, 38.7, 38.7, 39.0, 55.2, 61.1, 66.7, 68.4, 68.6, 69.9,
71.0, 71.1, 73.2, 74.8, 75.6, 76.7, 77.0, 77.2, 77.3, 78.1, 79.9, 81.9, 97.7, 101.5,
127.5, 127.7, 127.8, 127.9, 128.1, 128.3, 128.4, 138.1, 138.2, 138.8, 176.5, 176.9,
177.3, 177.8 ppm. MS (FAB-NBA + NaI): m/z = 986 (M + Na+ + 1). HRMS (FAB-NBA + NaI): calcd for C54H74O15Na: 985.4925; found: 985.4937.
Compound 7c: [α]D
22 -1.3 (c 0.50, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.07 (s, 9 H), 1.10 (s, 9 H), 1.14 (s, 9 H), 121 (s, 9 H), 3.37 (s, 3 H), 3.41
(dd, J = 3.7 Hz, 9.5 Hz, 1 H), 3.50-3.56 (m, 2 H), 3.60 (dd, J = 1.8 Hz, 10.4 Hz, 1 H), 3.78-3.84 (m, 2 H), 3.93-4.03 (m, 3 H), 4.22 (anomeric,
d, J = 7.9 Hz, 1 H), 4.34 (d, J = 11.9 Hz, 1 H), 4.59 (d, J = 3.7 Hz, 1 H), 4.60 (d, J = 12.5 Hz, 1 H), 4.69 (dd, J = 3.4 Hz, 10.4 Hz, 1 H), 4.70 (d, J = 11.3 Hz, 1 H), 4.74 (d, J = 12.5 Hz, 1 H), 4.82 (d, J = 12.2 Hz, 1 H), 5.07 (d, J = 11.0 Hz, 1 H), 5.10 (dd, J = 7.9 Hz, 10.4 Hz, 1 H), 5.22 (dd, J = 0.6 Hz, 3.1 Hz, 1 H), 7.19-7.45 (m, 15 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 27.0, 27.1, 27.1, 27.2, 38.7, 38.7, 38.9, 55.4, 61.1, 67.0, 67.6, 69.3, 69.6,
70.6, 71.3, 73.5, 73.7, 75.1, 75.3, 76.7, 77.0, 77.2, 77.3, 78.0, 79.7, 98.7, 99.4,
127.1, 127.3, 127.7, 128.0, 128.1, 128.3, 128.5, 128.6, 128.8, 137.5, 138.4, 139.4,
176.3, 176.9, 177.2, 177.8 ppm. MS (FAB-NBA + NaI): m/z = 986 (M + Na+ + 1). HRMS (FAB-NBA + NaI): calcd for C54H74O15Na: 985.4926; found: 985.4915.
Compound 8a: [α]D
23 +11.8 (c 1.00, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.00-1.90 (m, 10 H), 1.87 (s, 3 H), 2.03 (s, 9 H), 2.11 (s, 3 H), 3.60 (m,
1 H), 3.86 (ddd, J = 2.4 Hz, 4.9 Hz, 10.1 Hz, 1 H), 4.16 (dd, J = 2.3 Hz, 10.9 Hz, 1 H), 4.37 (m, 2 H), 5.17 (t, J = 9.8 Hz, 1 H), 5.46 (anomeric, d, J = 8.2 Hz, 1 H), 5.80 (dd, J = 8.9 Hz, 10.7 Hz, 1 H), 7.74 (m, 2 H), 7.86 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.1, 20.4, 20.6, 20.7, 23.5, 23.7, 25.3, 31.4, 33.1, 54.8, 60.3, 62.2, 69.2,
70.8, 71.6, 76.7, 77.0, 77.3, 77.6, 96.6, 123.5, 131.4, 134.2, 169.4, 170.1, 170.7
ppm. MS (FAB-NBA + NaI): m/z = 541 (M + Na+). HRMS (FAB-NBA + NaI): calcd for C26H31O10Na: 540.1846; found: 540.1840.
Compound 8d: [α]D
22 -23.7 (c 0.37,CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.87 (s, 3 H), 2.01 (s, 3 H), 2.05 (s, 3 H), 3.18 (s, 3 H), 3.37-3.46 (m, 2
H), 3.66 (dd, J = 3.8 Hz, 10.1 Hz, 1 H), 3.81-3.85 (m, 2 H), 3.91 (ddd, J = 2.5 Hz, 4.9 Hz, 10.1 Hz, 1 H), 3.98 (br, 1 H), 4.08 (dd, J = 2.9 Hz, 10.4 Hz, 1 H), 4.19 (dd, J = 2.5 Hz, 12.5 Hz, 1 H), 4.19 (t, J = 12.5 Hz, 1 H), 4.22 (d, J = 3.7 Hz, 1 H), 4.34 (dd, J = 5.2 Hz, 12.2 Hz, 1 H), 4.34 (d, J = 12.2 Hz, 1 H), 4.41 (dd, J = 8.7 Hz, 10.8 Hz, 1 H), 4.43 (d, J = 11.3 Hz, 1 H), 4.54 (d, J = 11.6 Hz, 1 H), 4.92 (d, J = 11.6 Hz, 1 H), 5.18 (dd, J = 9.2 Hz, 10.1 Hz, 1 H), 5.65 (anomeric, d, J = 8.2 Hz, 1 H), 5.93 (dd, J = 9.2 Hz, 10.7 Hz, 1 H), 6.99-7.36 (m, 15 H), 7.61-7.88 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.2, 20.4, 20.6, 20.6, 21.0, 29.6, 55.1, 55.1, 60.3, 62.0, 68.9, 69.1, 69.1,
70.4, 71.5, 73.2, 73.4, 74.9, 75.8, 76.7, 77.0, 77.2, 77.3, 78.8, 98.5, 99.4, 123.5,
123.6, 127.5, 127.6, 127.6, 127.6, 127.7, 127.7, 127.7, 127.8, 127.8, 128.1, 128.2,
128.2, 128.3, 128.3, 128.4, 128.4, 128.4, 128.5, 128.6, 131.5, 134.2, 134.2, 138.0,
138.3, 138.8, 167.3, 169.6, 170.0, 170.5 ppm. MS (FAB-NBA + NaI): m/z = 905 (M + Na+). HRMS (FAB-NBA + NaI): calcd for C48H51O15NNa: 904.3157; found: 904.3129.
<A NAME="RU02604ST-14">14</A>
Competition Experiment: To a solution of 9 (32.4 mg, 0.050 mmol) and 10 (33.3 mg, 0.050 mmol) in CH2Cl2 (1 mL) with stirring at ambient temperature was added Hf(OTf)4 (1.3 mg, 0.02 equiv). After 20 min, a saturated solution of NaHCO3 was added and the mixture was extracted with EtOAc. The organic layer was washed
with brine twice, dried with Na2SO4, filtered, and evaporated. The crude product was carefully purified by silica gel
column chromatography so as not to lose any of the generated glycosides. The mixture
of glycosides and the authentic glycosides were analyzed by HPLC (eluent: 0.5% IPA
in n-hexane).
<A NAME="RU02604ST-15">15</A>
Preparation of Authentic Glycosides for the Competition Experiment: Authentic glycosides (13-16) were synthesized by decarboxylative glycosylation promoted by trimethylsilyl trifluoromethanesulfonate
[5c]
from the corresponding mixed β-carbonates (9-12).
<A NAME="RU02604ST-16">16</A>
Evolution of carbon dioxide (90% yield) was confirmed by measuring the volume of generated
gas with a buret filled with water. Spaces in the reaction vessel and the buret were
dynamically separated by silicon oil that cannot dissolve carbon dioxide.