References
1 Present address: School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
Reviews:
2a
Schmidt RR.
Angew. Chem., Int. Ed. Engl.
1986,
25:
212
2b
Toshima K.
Tatsuta K.
Chem. Rev.
1993,
93:
1503
2c
Boons G.-J.
Tetrahedron
1996,
52:
1095
2d
Schmidt RR.
Comprehensive Organic Chemistry
Vol. 6:
Pergamon Press;
Oxford:
1991.
p.33-64
3a
Hashimoto S.
Hayashi M.
Noyori R.
Tetrahedron Lett.
1984,
25:
1379
3b
Mukaiyama T.
Shimpuku T.
Takashima T.
Kobayashi S.
Chem. Lett.
1989,
145
3c
Mukaiyama T.
Takashima T.
Katsurada M.
Aizawa H.
Chem. Lett.
1991,
533
3d
Mukaiyama T.
Katsurada M.
Takashima T.
Chem. Lett.
1991,
985
3e
Charette AB.
Marcoux J.-F.
Côté B.
Tetrahedron Lett.
1991,
32:
7215
3f
Mukaiyama T.
Matsubara K.
Chem. Lett.
1992,
1041
3g
Matsubara K.
Sasaki T.
Mukaiyama T.
Chem. Lett.
1993,
1373
3h
Matsubara K.
Mukaiyama T.
Chem. Lett.
1993,
2145
3i
Shinomura N.
Saitoh M.
Mukaiyama T.
Chem. Lett.
1994,
433
3j
Mukaiyama T.
Ishikawa T.
Uchiro H.
Chem. Lett.
1997,
389
4
Nashed EM.
Glaudemans CPJ.
J. Org. Chem.
1989,
54:
6116
5a
Bochkov AF.
Kochetkov NK.
Carbohydr. Res.
1975,
39:
355
5b
Kochetkov NK.
Backinowsky LV.
Tsvetkov YE.
Tetrahedron Lett.
1977,
3681
5c
Betaneli VI.
Ovchinnikov MV.
Backinowsky LV.
Kochetkov NK.
Carbohydr. Res.
1979,
76:
252
5d
Kochetkov NK.
Klimov EM.
Malysheva NN.
Tetrahedron Lett.
1989,
30:
5459
5e
Kochetkov NK.
Nepogod’ev SA.
Backinowsky LV.
Tetrahedron
1990,
46:
139
5f
Kochetkov NK.
Klimov EM.
Malysheva NN.
Demchenko AV.
Carbohydr. Res.
1991,
212:
77
5g
Kochetkov NK.
Malysheva NN.
Klimov EM.
Demchenko AV.
Tetrahedron Lett.
1992,
33:
381
6a
Iimori T.
Shibazaki T.
Ikegami S.
Tetrahedron Lett.
1996,
37:
2267
6b
Iimori T.
Azumaya I.
Shibazaki T.
Ikegami S.
Heterocycles
1997,
46:
221
6c
Azumaya I.
Niwa T.
Kotani M.
Iimori T.
Ikegami S.
Tetrahedron Lett.
1999,
40:
4683
7a
Inaba S.
Yamada M.
Yoshino T.
Ishido Y.
J. Am. Chem. Soc.
1973,
95:
2062
7b
Ishido Y.
Inaba S.
Matsuno A.
Yoshino T.
Umezawa H.
J. Chem. Soc., Perkin Trans. 1
1977,
1382
8
Scheffler G.
Schmidt RR.
Tetrahedron Lett.
1997,
38:
2943
9a
Kobayashi S.
Synlett
1994,
689 ; and references therein
9b
Kobayashi S.
Eur. J. Org. Chem.
1999,
15 ; and references therein
10
Kobayashi S.
Hachiya I.
Araki M.
Ishitani H.
Tetrahedron Lett.
1993,
34:
3755
11a
Kanie O.
Ito Y.
Ogawa T.
J. Am. Chem. Soc.
1994,
116:
12073
11b
Kim W.-S.
Hosono S.
Sasai H.
Shibasaki M.
Tetrahedron Lett.
1995,
36:
4443
11c
Hosono S.
Kim W.-S.
Sasai H.
Shibasaki M.
J. Org. Chem.
1995,
60:
4
11d
Kim W.-S.
Sasai H.
Shibasaki M.
Tetrahedron Lett.
1996,
37:
7797
11e
Yamada H.
Imamura K.
Takahashi T.
Tetrahedron Lett.
1997,
38:
391
11f
Shimizu M.
Togo H.
Yokoyama M.
Synthesis
1998,
799 ; and references therein
12
Typical Experimental Procedure for the Decarboxylative Glycosylation: To a solution of a mixed β-carbonate (0.1 mmol) in CH2Cl2 (1 mL) with stirring at ambient temperature was added a metal triflate. After the reaction was completed, a saturated solution of NaHCO3 was added and the mixture was extracted with EtOAc. The organic layer was washed with brine twice, dried over Na2SO4, filtered, and evaporated. The crude product was purified by silica gel column chromatography to give the corresponding glycosides.
13 Selected analytical data for the compounds 7b, 7c, 8a and 8d are shown. All the other glycosides are also fully characterized.
Compound 7b: [α]D
22 +10.9 (c 0.50, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.11 (s, 9 H), 1.14 (s, 9 H), 1.15 (s, 9 H), 1.24 (s, 9 H), 3.33 (dd, J = 8.9 Hz, 10.1 Hz, 1 H), 3.37 (s, 3 H), 3.47 (dd, J = 3.7 Hz, 9.8 Hz, 1 H), 3.59 (dd, J = 6.4 Hz, 10.7 Hz, 1 H), 3.82 (ddd, J = 1.8 Hz, 6.1 Hz, 9.8 Hz, 1 H), 3.89 (m, 1 H), 3.95-4.04 (m, 3 H), 4.11 (dd, J = 6.4 Hz, 11.0 Hz, 1 H), 4.45 (anomeric, d, J = 7.9 Hz, 1 H), 4.54 (d, J = 3.7 Hz, 1 H), 4.57 (d, J = 11.3 Hz, 1 H), 4.65 (d, J = 12.2 Hz, 1 H), 4.77 (d, J = 11.9 Hz, 1 H), 4.79 (d, J = 10.7 Hz, 1 H), 4.87 (d, J = 11.0 Hz, 1 H), 4.98 (d, J = 11.0 Hz, 1 H), 5.05 (dd, J = 3.4 Hz, 10.4 Hz, 1 H), 5.23 (dd, J = 7.9 Hz, 10.4 Hz, 1 H), 5.37 (dd, J = 0.9 Hz, 3.4 Hz, 1 H), 7.25-7.36 (m, 15 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 27.0, 27.1, 27.1, 38.7, 38.7, 38.7, 39.0, 55.2, 61.1, 66.7, 68.4, 68.6, 69.9, 71.0, 71.1, 73.2, 74.8, 75.6, 76.7, 77.0, 77.2, 77.3, 78.1, 79.9, 81.9, 97.7, 101.5, 127.5, 127.7, 127.8, 127.9, 128.1, 128.3, 128.4, 138.1, 138.2, 138.8, 176.5, 176.9, 177.3, 177.8 ppm. MS (FAB-NBA + NaI): m/z = 986 (M + Na+ + 1). HRMS (FAB-NBA + NaI): calcd for C54H74O15Na: 985.4925; found: 985.4937.
Compound 7c: [α]D
22 -1.3 (c 0.50, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.07 (s, 9 H), 1.10 (s, 9 H), 1.14 (s, 9 H), 121 (s, 9 H), 3.37 (s, 3 H), 3.41 (dd, J = 3.7 Hz, 9.5 Hz, 1 H), 3.50-3.56 (m, 2 H), 3.60 (dd, J = 1.8 Hz, 10.4 Hz, 1 H), 3.78-3.84 (m, 2 H), 3.93-4.03 (m, 3 H), 4.22 (anomeric, d, J = 7.9 Hz, 1 H), 4.34 (d, J = 11.9 Hz, 1 H), 4.59 (d, J = 3.7 Hz, 1 H), 4.60 (d, J = 12.5 Hz, 1 H), 4.69 (dd, J = 3.4 Hz, 10.4 Hz, 1 H), 4.70 (d, J = 11.3 Hz, 1 H), 4.74 (d, J = 12.5 Hz, 1 H), 4.82 (d, J = 12.2 Hz, 1 H), 5.07 (d, J = 11.0 Hz, 1 H), 5.10 (dd, J = 7.9 Hz, 10.4 Hz, 1 H), 5.22 (dd, J = 0.6 Hz, 3.1 Hz, 1 H), 7.19-7.45 (m, 15 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 27.0, 27.1, 27.1, 27.2, 38.7, 38.7, 38.9, 55.4, 61.1, 67.0, 67.6, 69.3, 69.6, 70.6, 71.3, 73.5, 73.7, 75.1, 75.3, 76.7, 77.0, 77.2, 77.3, 78.0, 79.7, 98.7, 99.4, 127.1, 127.3, 127.7, 128.0, 128.1, 128.3, 128.5, 128.6, 128.8, 137.5, 138.4, 139.4, 176.3, 176.9, 177.2, 177.8 ppm. MS (FAB-NBA + NaI): m/z = 986 (M + Na+ + 1). HRMS (FAB-NBA + NaI): calcd for C54H74O15Na: 985.4926; found: 985.4915.
Compound 8a: [α]D
23 +11.8 (c 1.00, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.00-1.90 (m, 10 H), 1.87 (s, 3 H), 2.03 (s, 9 H), 2.11 (s, 3 H), 3.60 (m, 1 H), 3.86 (ddd, J = 2.4 Hz, 4.9 Hz, 10.1 Hz, 1 H), 4.16 (dd, J = 2.3 Hz, 10.9 Hz, 1 H), 4.37 (m, 2 H), 5.17 (t, J = 9.8 Hz, 1 H), 5.46 (anomeric, d, J = 8.2 Hz, 1 H), 5.80 (dd, J = 8.9 Hz, 10.7 Hz, 1 H), 7.74 (m, 2 H), 7.86 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.1, 20.4, 20.6, 20.7, 23.5, 23.7, 25.3, 31.4, 33.1, 54.8, 60.3, 62.2, 69.2, 70.8, 71.6, 76.7, 77.0, 77.3, 77.6, 96.6, 123.5, 131.4, 134.2, 169.4, 170.1, 170.7 ppm. MS (FAB-NBA + NaI): m/z = 541 (M + Na+). HRMS (FAB-NBA + NaI): calcd for C26H31O10Na: 540.1846; found: 540.1840.
Compound 8d: [α]D
22 -23.7 (c 0.37,CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.87 (s, 3 H), 2.01 (s, 3 H), 2.05 (s, 3 H), 3.18 (s, 3 H), 3.37-3.46 (m, 2 H), 3.66 (dd, J = 3.8 Hz, 10.1 Hz, 1 H), 3.81-3.85 (m, 2 H), 3.91 (ddd, J = 2.5 Hz, 4.9 Hz, 10.1 Hz, 1 H), 3.98 (br, 1 H), 4.08 (dd, J = 2.9 Hz, 10.4 Hz, 1 H), 4.19 (dd, J = 2.5 Hz, 12.5 Hz, 1 H), 4.19 (t, J = 12.5 Hz, 1 H), 4.22 (d, J = 3.7 Hz, 1 H), 4.34 (dd, J = 5.2 Hz, 12.2 Hz, 1 H), 4.34 (d, J = 12.2 Hz, 1 H), 4.41 (dd, J = 8.7 Hz, 10.8 Hz, 1 H), 4.43 (d, J = 11.3 Hz, 1 H), 4.54 (d, J = 11.6 Hz, 1 H), 4.92 (d, J = 11.6 Hz, 1 H), 5.18 (dd, J = 9.2 Hz, 10.1 Hz, 1 H), 5.65 (anomeric, d, J = 8.2 Hz, 1 H), 5.93 (dd, J = 9.2 Hz, 10.7 Hz, 1 H), 6.99-7.36 (m, 15 H), 7.61-7.88 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.2, 20.4, 20.6, 20.6, 21.0, 29.6, 55.1, 55.1, 60.3, 62.0, 68.9, 69.1, 69.1, 70.4, 71.5, 73.2, 73.4, 74.9, 75.8, 76.7, 77.0, 77.2, 77.3, 78.8, 98.5, 99.4, 123.5, 123.6, 127.5, 127.6, 127.6, 127.6, 127.7, 127.7, 127.7, 127.8, 127.8, 128.1, 128.2, 128.2, 128.3, 128.3, 128.4, 128.4, 128.4, 128.5, 128.6, 131.5, 134.2, 134.2, 138.0, 138.3, 138.8, 167.3, 169.6, 170.0, 170.5 ppm. MS (FAB-NBA + NaI): m/z = 905 (M + Na+). HRMS (FAB-NBA + NaI): calcd for C48H51O15NNa: 904.3157; found: 904.3129.
14
Competition Experiment: To a solution of 9 (32.4 mg, 0.050 mmol) and 10 (33.3 mg, 0.050 mmol) in CH2Cl2 (1 mL) with stirring at ambient temperature was added Hf(OTf)4 (1.3 mg, 0.02 equiv). After 20 min, a saturated solution of NaHCO3 was added and the mixture was extracted with EtOAc. The organic layer was washed with brine twice, dried with Na2SO4, filtered, and evaporated. The crude product was carefully purified by silica gel column chromatography so as not to lose any of the generated glycosides. The mixture of glycosides and the authentic glycosides were analyzed by HPLC (eluent: 0.5% IPA in n-hexane).
15
Preparation of Authentic Glycosides for the Competition Experiment: Authentic glycosides (13-16) were synthesized by decarboxylative glycosylation promoted by trimethylsilyl trifluoromethanesulfonate
[5c]
from the corresponding mixed β-carbonates (9-12).
16 Evolution of carbon dioxide (90% yield) was confirmed by measuring the volume of generated gas with a buret filled with water. Spaces in the reaction vessel and the buret were dynamically separated by silicon oil that cannot dissolve carbon dioxide.