Abstract
Novel, efficient synthetic pathways were developed for the synthesis of a variety of pyridazino-fused polycyclic ring systems not easily accessible by other routes. The strategy is based on the sequential or one-pot combinations of a palladium catalyzed C-C bond forming process (Suzuki or Heck-type reaction) and a C-X (X = N, O) or another C-C bond forming reaction (for C-X: nucleophilic substitution, condensation, lactonization, nitrene C-H insertion, Buchwald-Hartwig amination; for C-C: Pschorr reaction, Heck-type reaction). Some of these methodologies have also been extended to the preparation of several diazino-fused ring systems.
1 Introduction
2 Results
2.1 Suzuki Reaction of Halopyridazinones
2.2 Suzuki Reaction and Nitrene Insertion or Azo-Coupling
2.3 Suzuki Reaction and Nucleophilic Substitution or Condensation Reaction
2.4 Suzuki Reaction and Heck-Type Arylation
2.5 Suzuki Reaction and Pschorr Reaction
2.6 Nucleophilic Substitution Reaction and Heck-Type Arylation
2.7 Buchwald-Hartwig Reaction of Halopyridazinones
2.8 Buchwald-Hartwig Reaction and Heck-Type Arylation
3 Conclusion
4 References
Key words
pyridazine - palladium-catalyzed reaction - pyridazino-fused ring systems - diazino-fused ring systems
References
1a
Mátyus P.
Kosáry J.
Kasztreiner E.
Makk N.
Diesler E.
Czakó K.
Rabloczky G.
Jaszlits L.
Horváth E.
Tömösközi Z.
Cseh G.
Horváth E.
Arányi P.
Eur. J. Med. Chem.
1992,
27:
107
1b
Mátyus P.
Varga I.
Zára E.
Mezei A.
Behr Á..
Simay A.
Haider N.
Boros S.
Bakonyi A.
Horváth E.
Horváth K.
Bioorg. Med. Chem. Lett.
1997,
7:
2857
1c
Pankucsi C.
Magyar J.
Bányász T.
Mátyus P.
Nánási PP.
IDrugs
1998,
1:
554
1d
Mátyus P.
Pharmazie
2001,
56:
50
2
Drugs Future
1999,
24:
1072 ; and references therein
3a
Mátyus P.
Fuji K.
Tanaka K.
Heterocycles
1993,
36:
1975
3b
Mátyus P.
Fuji K.
Tanaka K.
Heterocycles
1994,
37:
171
3c
Mátyus P.
Zára-Kaczián E.
Boros S.
J. Heterocycl. Chem.
1996,
33:
583
3d
Krajsovszky G.
Gaál A.
Haider N.
Mátyus P.
J. Mol. Struct.
2000,
528:
13
3e
Schwartz A.
Beke G.
Kovári Z.
Böcskey Z.
Farkas Ö.
Mátyus P.
J. Mol. Struct.
2000,
528:
49
3f
Éliás O.
Károlyházy L.
Stájer G.
Fülöp F.
Czakó K.
Harmath V.
Barabás O.
Keserû K.
Mátyus P.
J. Mol. Struct.
2001,
545:
75
3g
Károlyházy L.
Horváth G.
Mátyus P.
Acta Pharm. Hung.
2001,
71:
168
4a
Timári G.
Soós T.
Hajós G.
Messmer A.
Nacsa J.
Molnár J.
Bioorg. Med. Chem. Lett.
1996,
6:
2831
4b
Timári G.
Soós T.
Hajós G.
Synlett
1997,
1067
4c
Csányi D.
Timári G.
Hajós G.
Synth. Commun.
1999,
29:
3959
4d
Soós T.
Timári G.
Hajós G.
Tetrahedron Lett.
1999,
40:
8607
4e
Csányi D.
Hajós G.
Riedl Z.
Timári G.
Bajor Z.
Cochard F.
Sapi J.
Laronze JY.
Bioorg. Med. Chem. Lett.
2000,
10:
1767
4f
Béres M.
Timári G.
Hajós G.
Tetrahedron Lett.
2002,
43:
6035
5a For the direct C-functionalization of pyridazines via Minisci reaction see: Heinisch G.
Bull. Soc. Chim. Belg.
1992,
101:
579
5b For the direct functionalization of chloropyridazines via aluminum chloride induced reaction see: Pollak A.
Stanovnik B.
Tiler M.
J. Org. Chem.
1966,
31:
4297
5c And: Coates WJ.
McKillop A.
J. Org. Chem.
1990,
55:
5418
6
Maes BUW.
Komrlj J.
Lemière GLF.
J. Heterocycl. Chem.
2002,
39:
535 ; and references cited therein
7a
Turck A.
Plé N.
Mojovic L.
Quéguiner G.
Bull. Soc. Chim. Fr.
1993,
130:
488
7b
Trécourt F.
Turck A.
Plé N.
Paris A.
Quéguiner G.
J. Heterocycl. Chem.
1995,
32:
1057
7c
Draper TL.
Bailey TR.
J. Org. Chem.
1995,
60:
748
7d
Parrot I.
Rival Y.
Wermuth CG.
Synthesis
1999,
1163
7e
Estévez I.
Coelho A.
Raviña E.
Synthesis
1999,
1666
7f
Gong Y.
Pauls HW.
Synlett
2000,
6:
829
For reviews on 4,5-dihalo-3(2H )-pyridazinones see:
8a
Mátyus P.
Czakó K. In Trends in Heterocyclic Chemistry
Vol. 3:
Council of Scientific Information Publishing;
Trivandrum:
1993.
p.249
8b
Tapolcsányi P.
Mátyus P. In Targets in Heterocyclic Systems
Vol. 6:
Italian Chemical Society;
Italy:
2002.
p.369
9
Mátyus P.
Czakó K.
Behr Á.
Varga I.
Podányi B.
von Arnim M.
Várkonyi P.
Heterocycles
1993,
36:
785
10a
Maes BUW.
RŽkyek O.
Komrlj J.
Lemière GLF.
Esmans E.
Rozenski J.
Dommisse RA.
Haemers A.
Tetrahedron
2001,
57:
1323
10b
R’kyek O.
Maes BUW.
Jonckers THM.
Lemière GLF.
Dommisse R.
Tetrahedron
2001,
57:
10009
10c
Riedl Z.
Maes BUW.
Monsieurs K.
Lemière GLF.
Mátyus P.
Hajós G.
Tetrahedron
2002,
58:
5645
11a see ref. 8
11b
Cho SD.
Choi WY.
Yoon YJ.
J. Heterocycl. Chem.
1996,
33:
1579
11c
Lyga JW.
J. Heterocycl. Chem.
1988,
25:
1757
11d
Barlin GB.
Lakshminarayanan P.
J. Chem. Soc., Perkin Trans. 1
1977,
1038
12
Gronowitz S.
Bobosik V.
Lawitz K.
Chem. Scr.
1984,
23:
120
13a
Gronowitz S.
Timári G.
J. Heterocycl. Chem.
1990,
27:
1159
13b
Gronowitz S.
Timári G.
J. Heterocycl. Chem.
1990,
27:
1127
14a
Krajsovszky G.
Mátyus P.
Riedl Z.
Csányi D.
Hajós G.
Heterocycles
2001,
55:
1105
14b
Tapolcsányi P.
Krajsovszky G.
Andó R.
Lipcsey P.
Horváth G.
Mátyus P.
Riedl Z.
Hajós G.
Maes BUW.
Lemière LF.
Tetrahedron
2002,
58:
10137
15 Éliás, O.; Tapolcsányi, P.; Mátyus, P. et al., unpublished results.
16 Andrási F, Angyal Á, and Bezsenyi P. inventors; Internatl. Pat. Appl. WO 00/27851.
et al.
; Chem. Abstr . 2000 , 132 , 334478
17
Atkinson CM.
Rodway RE.
J. Chem. Soc.
1959,
1
18
Nagashima H.
Oda H.
Hayakawa T.
Kaji K.
Heterocycles
1987,
26:
1
19
Maes BUW.
Monsieurs K.
Loones KTJ.
Lemière GLF.
Dommisse R.
Mátyus P.
Riedl Z.
Hajós G.
Tetrahedron
2002,
58:
9713
Examples of Pd-catalyzed intramolecular arylation:
20a
Rice JE.
Cai ZW.
Tetrahedron Lett.
1992,
33:
1675
20b
Rice JE.
Cai ZW.
J. Org. Chem.
1993,
58:
1415
20c
Hennings DD.
Iwasa S.
Rawal VH.
Tetrahedron Lett.
1997,
38:
6379
20d
Hennings DD.
Iwasa S.
Rawal VH.
J. Org. Chem.
1997,
62:
2
20e
Gonzalez JJ.
Garcia N.
Gómez Lor B.
Echavarren AM.
J. Org. Chem.
1997,
62:
1286
20f
Bringmann G.
Breuning M.
Tasler S.
Synthesis
1999,
525
20g
Reisch HA.
Bratcher MS.
Scott LT.
Org. Lett.
2000,
2:
1427
20h
Wang L.
Shelvin PB.
Org. Lett.
2000,
2:
3703
20i
Marcinov Z.
Sygula A.
Ellern A.
Rabideau PW.
Org. Lett.
2001,
3:
3527
20j
Mehta G.
Sarma PVVS.
Tetrahedron Lett.
2002,
43:
6557
20k
Echavarren AM.
Gómez JJ.
de Frutos Ó.
Synlett
2003,
585
20l
Wegner HA.
Scott LT.
de Meijere A.
J. Org. Chem.
2003,
68:
883
21
Tapolcsányi P.
Maes BUW.
Monsieurs K.
Lemière GLF.
Riedl Z.
Hajós G.
Van den Driessche B.
Dommisse RA.
Mátyus P.
Tetrahedron
2003,
59:
5919
22
Fitton P.
Rick EA.
J. Organomet. Chem.
1971,
28:
287
23
Smith BM.
March J.
Advanced Organic Chemistry
5th ed.:
Wiley-Interscience;
New York:
2000.
Chap. 14.17.
p.928-929
24 For a review for transformations of aryldiazonium salts see: Galli C.
Chem. Rev.
1988,
88:
765
For examples of intramolecular Heck-type reactions for the construction of carbazole carboline and dibenzofurane skeletons and their aza-analogues see:
25a
Iida H.
Yuasa Y.
Kibayashi C.
J. Org. Chem.
1980,
45:
2938
25b
Ames DE.
Bull D.
Tetrahedron
1982,
38:
383
25c
Ames DE.
Opalko A.
Synthesis
1983,
234
25d
Chen CY.
Lieberman DR.
Larsen RD.
Verhoeven TR.
Reider PJ.
J. Org. Chem.
1997,
62:
2676
25e
Iwaki T.
Yasuhara A.
Sakamoto T.
J. Chem. Soc., Perkin Trans. 1
1999,
1505
25f
Edmondson SD.
Mastracchio A.
Parmee ER.
Org. Lett.
2000,
2:
1109
25g
Zhang YM.
Razler T.
Jackson PF.
Tetrahedron Lett.
2002,
43:
8235
25h
Bedford RB.
Cazin CSJ.
Chem. Commun.
2002,
2310
25i
Jonckers THM.
Maes BUW.
Lemière GLF.
Rombouts G.
Pieters L.
Haemers A.
Dommisse RA.
Synlett
2003,
615
25j
Ferreira ICFR.
Queiroz MJRP.
Kirsch G.
Tetrahedron
2003,
59:
3737
26
Dajka-Halász B.
Monsieurs K.
Éliás O.
Károlyházy L.
Tapolcsányi P.
Maes BUW.
Riedl Z.
Hajós G.
Dommisse RA.
Lemière GLF.
Komrlj J.
Mátyus P.
Tetrahedron
2004,
60:
2283
For the synthesis of 2-substituted 5-aryloxy-4-halopyridazin-3(2H )-ones via phenolysis of 2-substituted 4,5-dihalopyridazin-3(2H )-ones see:
27a
Kang YJ.
Chung HA.
Kweon DH.
Cho SD.
Lee SG.
Kim SK.
Yoon YJ.
J. Heterocycl. Chem.
1998,
35:
595
27b
Kweon DH.
Kang YJ.
Chung HA.
Yoon YJ.
J. Heterocycl. Chem.
1998,
35:
819
27c
Kweon DH.
Chung JW.
Cho SD.
Kim SK.
Yoon YJ.
J. Heterocycl. Chem.
1998,
35:
1401
27d
Chung HA.
Kim JJ.
Cho SD.
Lee SG.
Yoon YJ.
J. Heterocycl. Chem.
2002,
39:
685
28 ‘Pd(PPh3 )2 X2 , M2 CO3 and Bu4 NY in DMF’ are the ‘Jefferey’s’ reaction conditions. For intermolecular Heck reactions under ‘Jefferey’s’ conditions see: Jefferey T.
Tetrahedron
1996,
52:
10113
For reviews on the Buchwald-Hartwig reaction see:
29a
Barañano D.
Mann G.
Hartwig JF.
Curr. Org. Chem.
1997,
1:
287
29b
Frost CG.
Mendonça P.
J. Chem. Soc., Perkin Trans. 1
1998,
2615
29c
Hartwig JF.
Angew. Chem. Int. Ed.
1998,
37:
2047
29d
Yang BH.
Buchwald SL.
J. Organomet. Chem.
1999,
576:
125
29e
Hartwig JF.
In Modern Amination Methods
Ricci A.
Wiley-VCH;
Weinheim:
2000.
p.195-262
29f
Muci AR.
Buchwald SL.
Top. Curr. Chem.
2002,
219:
131
29g For recent reviews containing a chapter on the Buchwald-Hartwig reaction see: Littke AF.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
4176
29h See also: Prim D.
Campagne JM.
Joseph D.
Andrioletti B.
Tetrahedron
2002,
58:
2041
30
Komrlj J.
Maes BUW.
Lemière GLF.
Haemers A.
Synlett
2000,
1581
31
Wolfe JP.
Buchwald SL.
J. Org. Chem.
2000,
65:
1144
32
Wolfe JP.
Buchwald SL.
Tetrahedron Lett.
1997,
38:
6359
33
Wolfe JP.
Buchwald SL.
J. Org. Chem.
1997,
62:
6066
34a
Watanabe M.
Nishiyama M.
Yamamoto T.
Koie Y.
Tetrahedron Lett.
2000,
41:
481
34b For other examples dealing with the rate accelerating effect of large excesses of carbonate bases on Pd-catalyzed aminations see: Jonckers THM.
Maes BUW.
Lemière GLF.
Dommisse R.
Tetrahedron
2001,
57:
7027
34c And: Maes BUW.
Loones KTJ.
Jonckers THM.
Lemière GLF.
Dommisse RA.
Haemers A.
Synlett
2002,
1995