RSS-Feed abonnieren
DOI: 10.1055/s-2004-822929
Synthesis of Highly Conjugated Two-Dimensional Molecular Scaffolds via Pd-Catalyzed Reactions on a Tetraphenylethylene Core
Publikationsverlauf
Publikationsdatum:
10. Mai 2004 (online)
Abstract
A facile synthesis of ethylene centered highly conjugated two-dimensional molecular scaffolds is described via Pd-catalyzed coupling reactions (Sonogashira and Heck reactions) on a tetraphenylethylene core.
Key words
tetraphenylethylene - Sonogashira coupling - Heck reaction - two-dimensional conjugation
-
1a
Petty MC.Bryce MR.Bloor D. An Introduction to Molecular Electronics Oxford University Press; New York: 1995. -
1b
Electronic Materials: The Oligomeric Approach
Müllen K.Wegner G. Wiley-VCH; Weinheim: 1997. -
1c
Sheats JR.Barbara PF. Acc. Chem. Res. 1999, 32(3): 191-276 -
2a
Scherf U.Müllen K. Synthesis 1992, 23 -
2b
Long NJ. Angew. Chem., Int. Ed. Engl. 1995, 34: 21 -
2c
Kraft A.Grimsdale AC.Holmes AB. Angew. Chem. Int. Ed. 1998, 37: 402 -
2d
Martin RE.Diederich F. Angew. Chem. Int. Ed. 1999, 38: 1350 -
2e
Tour JM. Acc. Chem. Res. 2000, 33: 791 -
2f
Mitschke U.Bäurele P. J. Mater. Chem. 2000, 10: 1471 -
2g
Segura JL.Martin N. J. Mater. Chem. 2000, 10: 2403 - 3
Diederich F. Chem. Commun. 2001, 219 - For two-dimensional tetraethynyl modules based on cumulene and iron-cyclobutadiene cores, see:
-
4a
van Loon J.-D.Seiler P.Diederich F. Angew. Chem., Int. Ed. Engl. 1993, 32: 1187 -
4b
Bunz UHF.Enkelmann V. Angew. Chem., Int. Ed. Engl. 1993, 32: 1653 -
5a
Hori Y.Noda K.Kobayashi S.Taniguchi H. Tetrahedron Lett. 1969, 3563 -
5b
Tykwinski RR.Diederich F. Liebigs Ann. Recl. 1997, 649 -
6a
Bosshard C.Spreiter R.Günter P.Tykwinski RR.Schreiber M.Diederich F. Adv. Mater. 1996, 8: 231 -
6b
Spreiter R.Bosshard C.Knöpfle GP.Tykwinski RR.Schreiber M.Diederich F. J. Phys. Chem. B 1998, 102: 29 -
6c
Tykwinski RR.Gubler U.Martin RE.Diederich F.Bosshard C.Knöpfle GP. J. Phys. Chem. B 1998, 102: 4451 -
6d
Mitzel F.Boudon C.Gisselbrecht J.-P.Seiler P.Gross M.Diederich F. Chem. Commun. 2003, 1634 -
6e
Moonen NNP.Gist R.Boudon C.Gisselbrecht J.-P.Seiler P.Kawai T.Kishioka A.Gross M.Irie M.Diederich F. Org. Biomol. Chem. 2003, 1: 2032 -
7a
Albota M.Beljonne D.Brédas J.-L.Ehrlich JE.Fu J.-Y.Heikal AA.Hess SE.Kogej T.Levin MD.Marder SR.McCord-Maughon D.Perry JW.Rockel H.Rumi M.Subramanian G.Webb WW.Wu X.-L.Xu C. Science 1998, 281: 1653 -
7b
Reinhardt BA.Brott LL.Clarson SJ.Dillard AG.Bhatt JC.Kannan R.Yuan L.He GS.Prasad PN. Chem. Mater. 1998, 10: 1863 -
7c
Rumi M.Ehrlich JE.Heikal AA.Perry JW.Barlow S.Hu Z.-Y.McCord-Maughon D.Parker TC.Rockel H.Thayumanavan S.Marder SR.Belijonne D.Brédas J.-L. J. Am. Chem. Soc. 2000, 122: 9500 -
7d
Mongin O.Porres L.Moreaux L.Mertz J.Blanchard-Desce M. Org. Lett. 2002, 4: 719 - 8
Buckles RE.Matlock GM. Org. Synth., Coll. Vol. IV 1963, 914 -
9a
Adronov A.Fréchet JMJ. Chem. Commun. 2000, 1701 -
9b
Hecht S.Fréchet JMJ. Angew. Chem. Int. Ed. 2001, 40: 74 -
10a
Sonogashira K. In Comprehensive Organic Synthesis Vol. 3:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.551 -
10b
Sonogashira K. In Metal-catalyzed Cross-coupling ReactionsDiederich F.Stang P. Wiley-VCH; Weinheim: 1998. p.203 -
11a
de Meijere A.Meyer FE. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 -
11b
Jefferey T. In Advances in Metal-Organic Chemistry Vol. 5:Liebeskind LS. JAI Press; Greenwich, CT: 1996. p.153 -
11c
de Meijere A.Bräse S. In Metal-catalyzed Cross-coupling ReactionsDiederich F.Stang P. Wiley-VCH; Weinheim: 1998. p.99 -
11d
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 - 12 For a recent preparation of 5 via a similar procedure, see:
Tanaka K.Fujimoto D.Toda F. Tetrahedron Lett. 2000, 41: 6095 - 14
Tanaka K.Fujimoto D.Oeser T.Irngartinger H.Toda F. Chem. Commun. 2000, 413 - 16
Spangler CW.Elandaloussi EH.Reeves B. Polym. Prepr. 2000, 41: 789
References
A mixture of tetraphenylethylene (0.11 g, 0.33 mmol), I2 (0.23 g, 0.80 mmol) and PhI(OAc)2 (0.31 g, 0.80 mmol) in dry CHCl3 (7 mL) was stirred at r.t. in the dark for 60 h. The reaction mixture was filtered and the residue washed with cold benzene. It was then recrystallized from CCl4 to give the tetraiodide 5 (80%); mp >250 °C. UV/Vis (CHCl3):
λ = 265 (ε = 38250 dm3mol-1cm-1), 330 (ε = 17375
dm3mol-1cm-1) nm. 1H NMR (300 MHz, CDCl3): δ = 6.78 (d, 8 H, J = 7.7 Hz), 7.40 (d, 8 H, J = 7.7 Hz).
Compound 8: IR (CHCl3): 3000, 2910, 2090, 1480 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 3.24 (s, 4 H), 6.90 (d, 8 H, J = 8 Hz), 7.12 (d, 8 H, J = 8 Hz). C34H20 requires C, 95.32; H, 4.67%. Found: C, 95.16; H, 4.71; Compound 9: IR (CHCl3): 3300, 3000, 1605, 1450 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 4.26 (d, 8 H, J = 5.4 Hz), 5.31 (t, 4 H, J = 5.4 Hz), 6.94 (d, 8 H, J = 7.8 Hz), 7.22 (d, 8 H, J = 7.8 Hz). Compound 10: IR (CHCl3): 3000, 2930, 1700, 1650, 1600, 1465 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 4.31 (s, 8 H), 7.04 (d, 8 H, J = 8 Hz), 7.32 (d, 8 H, J = 8 Hz), 7.50-7.82 (m, 8 H), 7.86-8.30 (m, 16 H), 8.70 (br s, 4 H). C82H52O8 requires C, 84.53; H, 4.46%. Found: C, 84.19; H, 4.66. Compound 11: IR (CHCl3): 2920, 1708, 1630, 1360, 1305 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.33 (t, 12 H, J = 7 Hz), 4.20 (q, 8 H, J = 7 Hz), 6.56 (d, 4 H, J = 15 Hz), 7.07 (d, 8 H, J = 8 Hz), 7.40 (d, 8 H, J = 8Hz), 7.78 (d, 4 H, J = 15 Hz).