References
<A NAME="RG20203ST-1A">1a</A>
Patai S.
The Chemistry of Diazonium and Diazo Groups, In The Chemistry of Functional Groups
Patai S.
John Wiley;
Chichester:
1978.
<A NAME="RG20203ST-1B">1b</A>
Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., accepted (review).
<A NAME="RG20203ST-2">2</A> For example:
Sharpless KB.
Demko TP.
Org. Lett.
2001,
3:
4091
<A NAME="RG20203ST-3">3</A>
Kumar HMS.
Reddy BVS.
Anjaneyulu S.
Yadav JS.
Tetrahedron Lett.
1999,
40:
8305
<A NAME="RG20203ST-4A">4a</A>
Capitosti SM.
Hansen TP.
Brown ML.
Org. Lett.
2003,
5:
2865
<A NAME="RG20203ST-4B">4b</A>
Habeeb AG.
Rao PNP.
Knaus EE.
J. Med. Chem.
2001,
44:
3039
<A NAME="RG20203ST-5">5</A>
Pinney KG.
Mejia MP.
Villalobos VM.
Rosenquist BE.
Pettit GR.
Verdier-Pinard P.
Hamel E.
Bioorg. Med. Chem. Lett.
2000,
8:
2417
<A NAME="RG20203ST-6">6</A>
Zollinger H.
Diazo Chemistry
Vol. 1:
VCH;
Weinheim:
1994.
<A NAME="RG20203ST-7">7</A>
Drewry DH.
Gerritz SW.
Linn JA.
Tetrahedron Lett.
1997,
38:
3377
<A NAME="RG20203ST-8">8</A>
Schneider SE.
Bishop PA.
Salazar MA.
Bishop OA.
Anslyn EV.
Tetrahedron
1998,
54:
15063
<A NAME="RG20203ST-9">9</A>
Tortolani DR.
Biller SA.
Tetrahedron Lett.
1996,
37:
5687
<A NAME="RG20203ST-10">10</A>
Lee CE.
Kick EK.
Ellman JA.
J. Am. Chem. Soc.
1998,
120:
9735
<A NAME="RG20203ST-11A">11a</A>
Le Hetet C.
David M.
Carreaux F.
Carboni B.
Sauleau A.
Tetrahedron Lett.
1997,
38:
5153
<A NAME="RG20203ST-11B">11b</A>
Oh HS.
Hahn HG.
Cheon SH.
Ha DC.
Tetrahedron Lett.
2000,
41:
5069
<A NAME="RG20203ST-12">12</A>
Annis DA.
Helluin O.
Jacobsen EN.
Angew. Chem. Int. Ed.
1998,
37:
1907 ; Angew. Chem. 1998, 110, 2010
<A NAME="RG20203ST-13">13</A>
Hanessian S.
Xie F.
Tetrahedron Lett.
1998,
39:
737
<A NAME="RG20203ST-14">14</A>
Nicolaou KC.
Winssinger N.
Vourloumis D.
Ohshima T.
Kim S.
Pfefferkorn J.
Xu JY.
Li T.
J. Am. Chem. Soc.
1998,
120:
10814
<A NAME="RG20203ST-15A">15a</A>
Meldal M.
Juliano MA.
Jansson AM.
Tetrahedron Lett.
1997,
38:
2531
<A NAME="RG20203ST-15B">15b</A>
Long DD.
Smith MD.
Marquess DG.
Claridge TDW.
Fleet GWJ.
Tetrahedron Lett.
1998,
39:
9293
<A NAME="RG20203ST-15C">15c</A>
Kim JM.
Bi YZ.
Paikoff SJ.
Schultz PG.
Tetrahedron Lett.
1996,
37:
5305
<A NAME="RG20203ST-15D">15d</A>
Savin KA.
Woo JCG.
Danishefsky SJ.
J. Org. Chem.
1999,
64:
4183
<A NAME="RG20203ST-16A">16a</A>
Tang ZL.
Pelletier JC.
Tetrahedron Lett.
1998,
39:
4773
<A NAME="RG20203ST-16B">16b</A>
Tremblay MR.
Poirier D.
Tetrahedron Lett.
1999,
40:
1277
<A NAME="RG20203ST-16C">16c</A>
Osborn NJ.
Robinson JA.
Tetrahedron
1993,
49:
2873
<A NAME="RG20203ST-16D">16d</A>
Liang R.
Yan L.
Loebach J.
Ge M.
Uozumi Y.
Sekanina K.
Horan N.
Gildersleeve J.
Thompson C.
Smith A.
Biswas K.
Still WC.
Kahne D.
Science
1996,
274:
1520
<A NAME="RG20203ST-17">17</A>
Melai V.
Brillante A.
Zanirato P.
J. Chem. Soc., Perkin Trans. 2
1998,
2447
<A NAME="RG20203ST-18A">18a</A>
Freeze S.
Norris P.
Heterocycles
1999,
51:
1807
<A NAME="RG20203ST-18B">18b</A>
Moore M.
Norris P.
Tetrahedron Lett.
1998,
39:
7027
<A NAME="RG20203ST-19">19</A>
Gouault N.
Cupif J.-F.
Sauleau A.
David M.
Tetrahedron Lett.
2000,
41:
7293
<A NAME="RG20203ST-20">20</A>
Missio A.
Marchioro C.
Rossi T.
Panunzio M.
Selva S.
Seneci P.
Biotechnol. Bioeng.
2000,
71:
38
<A NAME="RG20203ST-21">21</A>
Butler RN.
Fox A.
Collier S.
Burke LA.
J. Chem. Soc., Perkin Trans. 2
1998,
2243
<A NAME="RG20203ST-22">22</A>
Bräse, S.; Lormann, M.; Vogt, H. Scope and Limitation of a Tin Promoted Amidation
on Solid Phase: A New Monitoring for the T1 Triazene Linker; Proceedings of ECSOC-4,
The Third International Electronic Conference on Synthetic Organic Chemistry, September
1-30, 2000, see also http://www.mdpi.org/ecsoc-4.htm.
<A NAME="RG20203ST-23">23</A>
Nelson JC.
Young JK.
Moore JS.
J. Org. Chem.
1996,
61:
8160
<A NAME="RG20203ST-24A">24a</A>
Bräse S.
Dahmen S.
Chem.-Eur. J.
2000,
6:
1899
<A NAME="RG20203ST-24B">24b</A>
Bräse, S.; Dahmen, S.; Lormann, M. The T1 Linker: Multidirectional Cleavage for Solid
Phase Organic Synthesis; Proceedings of ECSOC-3, The Third International Electronic
Conference on Synthetic Organic Chemistry, 1999, see also http://www.mdpi.org/ecsoc-3.htm.
<A NAME="RG20203ST-25">25</A>
Bräse S.
Dahmen S.
Heuts J.
Tetrahedron Lett.
1999,
40:
6201
<A NAME="RG20203ST-26A">26a</A>
Bräse S.
Schroen M.
Angew. Chem. Int. Ed.
1999,
38:
1071 ; Angew. Chem.
1999, 111, 1139
<A NAME="RG20203ST-26B">26b</A>
de Meijere A.
Nüske H.
Es-Sayed M.
Labahn T.
Schroen M.
Bräse S.
Angew. Chem. Int. Ed.
1999,
38:
3669 ; Angew. Chem.
1999, 111, 3881
<A NAME="RG20203ST-27A">27a</A>
Lormann M.
Dahmen S.
Bräse S.
Tetrahedron Lett.
2000,
41:
3813
<A NAME="RG20203ST-27B">27b</A>
Bräse S.
Enders D.
Köbberling J.
Avemaria F.
Angew. Chem. Int. Ed.
1998,
37:
3413 ; Angew. Chem.
1998, 110, 3614
<A NAME="RG20203ST-28A">28a</A>
Rozhkov VV.
Kuvshinov AM.
Shevelev SA.
Org. Prep. Proced. Int.
2000,
32:
94
<A NAME="RG20203ST-28B">28b</A>
Rozhkov VV.
Kuvshinov AM.
Gulevskaya VI.
Chervin II.
Shevelev SA.
Synthesis
1999,
2065
<A NAME="RG20203ST-29">29</A>
Clark BJ.
Grayshan R.
J. Chem. Res., Miniprint
1981,
3786
<A NAME="RG20203ST-30A">30a</A>
Chaykovsky M.
Adolph HG.
J. Heterocycl. Chem.
1991,
28:
1491
<A NAME="RG20203ST-30B">30b</A>
Rauhut G.
Eckert F.
J. Phys. Chem.
1999,
103:
9062
<A NAME="RG20203ST-30C">30c</A>
Kamal MR.
El-Abadelah MM.
Mohammad AA.
Heterocycles
1999,
50:
819
<A NAME="RG20203ST-31">31</A>
Gil, C.; Bräse, S. unpublished results.
<A NAME="RG20203ST-32">32</A>
Representative Procedure for Synthesis of a T1-Resin:
The aniline 2n (3.68 g, 20.2 mmol) was dissolved in 100 mL of CH2Cl2 and BF3·OEt2 (4.26 g, 30.0 mmol) was added at r.t. The mixture was cooled to -15 °C and isoamyl
nitrite (3.83 g, 32.7 mmol) was added dropwise with stirring for 15 min. After stirring
for 4 h the mixture was cooled to -70 °C and the solid diazonium salt was filtered
off, washed with precooled Et2O and suspended in MeCN at -40 °C. In a second flask, the benzylamine resin 1 (5.00 g, 4.65 mmol, loading 0.93 mmol/g) was dissolved in THF at -20 °C and pyridine
(5.87 g, 74.0 mmol) was added. The cooled suspension of the diazonium salt was added
to the benzylamine resin suspension and the reaction mixture was stirred slowly for
6 h. It was allowed to warm up to r.t. The resin was filtered off, washed sequentially
with THF, CH2Cl2, MeOH, pentane, DMF and dried under high vacuum.
<A NAME="RG20203ST-33">33</A>
Representative Procedure for Cleavage of a T1-Resin:
The resin 3n (0.40 g, loading 0.74 mmol/g) was suspended in 5 mL of CH2Cl2 and trifluoroacetic acid (0.30 mL, 4.0 mmol) was added dropwise at r.t. After 2-5
min, trimethylsilyl azide (0.15 mL, 1.2 mmol) was added to the resin and after few
minutes (5-10) the mixture was filtered and the solvent was removed by evaporation.
1-Azido-5-methoxy-2-methyl-4-nitro-benzene (4n): 58.5 mg, 79% yield. GC: Rt = 13.99 min. IR (KBr disk): 2100 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.18 (s, 3 H), 3.99 (s, 3 H), 6.73 (s, 1 H) 7.79 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 16.2 (Cp), 56.8 (Cp), 102.9 (Cp), 121.8 (Cq), 128.6 (Cp), 135.5 (Cq), 144.6 (Cq), 152.9 (Cq). MS-DIP: m/z (%) = 208 (51), 180 (92), 152 (50), 122 (27), 106 (10), 95 (100), 92 (73), 80 (95),
77 (12), 63 (23).
<A NAME="RG20203ST-34A">34a</A>
Trimethyl silyl azide is a commercially available combustible liquid, which has no
explosive properties.
<A NAME="RG20203ST-34B">34b</A>
Groutas WC.
Felker D.
Synthesis
1980,
861
<A NAME="RG20203ST-35A">35a</A>
Ghosh PB.
Whitehouse MW.
J. Med. Chem.
1968,
11:
305
<A NAME="RG20203ST-35B">35b</A>
Cerecetto H.
Di Maio R.
Gonzalez M.
Risso M.
Saenz P.
Seoane G.
Denicola A.
Peluffo G.
Quijano C.
Olea-Azar C.
J. Med. Chem.
1999,
42:
1941
<A NAME="RG20203ST-36">36</A>
Krasinski, A., Fokin, V. V., Sharpless, K. B.; Org. Lett., submitted.
<A NAME="RG20203ST-37">37</A>
Scheiner P.
Schomaker JH.
Deming S.
Libbey WJ.
Nowack GP.
J. Am. Chem. Soc.
1965,
87:
306
<A NAME="RG20203ST-38">38</A>
The crude solution of the azide (4t) was washed with H2O to remove the excess of trimethyl silyl azide, and norbornene was added. After 3
d at 25 °C the solvent was evaporated and the residue was recrystallized from petroleum
ether/EtOAc (1:1).
3-(2′-Bromophenyl)-3,4,5-triazatri-cyclo[5.2.1.02,6]dec-4-ene (5): >95%. IR (KBr): 3403 (w), 3068 (w), 2968 (s), 2874 (m), 2662 (w), 1921 (w), 1802
(w), 1586 (m), 1503 (m), 1469 (s), 1325 (m), 1310 (m), 1300 (m), 1260 (m), 1247 (m),
1216 (w), 1159 (w), 1124 (m), 1079 (m), 1046 (s), 1028 (m), 1012 (m), 974 (s), 952
(m), 918 (s), 888 (w), 863 (w), 846 (m), 805 (w), 754 (s), 714 (w), 700 (m), 640 (m)
cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.08-1.10 (complex, 2 H, 10-H), 1.20 (m, 1 H, 9-H), 1.34 (m, 1 H, 8-H), 1.44
(m, 1 H, 9-H), 1.55 (m, 1 H, 8-H), 2.06 (d, 3
J = 4.3 Hz, 1 H, 1-H), 2.70 (d, 3
J = 4.4 Hz, 1 H, 7-H), 4.25 (d, 3
J = 9.1 Hz, 1 H, 2-H), 4.61 (d, 3
J = 9.2 Hz, 1 H, 6-H), 7.07 (ddd, 3
J = 8.0 Hz, 3
J = 7.3 Hz, 4
J = 1.7 Hz, 1 H, 5′-H), 7.28 (ddd, 3
J = 8.0 Hz, 3
J = 7.3 Hz, 4
J = 1.4 Hz, 1 H, 4′-H), 7.34 (dd, 3
J = 8.0 Hz, 4
J = 1.7 Hz, 1 H, 3′-H), 7.59 (dd, 3
J = 8.0 Hz, 4
J = 1.4 Hz, 1 H, 6′-H). 13C NMR (75 MHz, CDCl3): δ = 24.9 (-, 9-CH2), 25.4 (-, 8-CH2), 31.8 (-, 10-CH2), 40.1 (+, 1-CH), 40.7 (+, 7-CH), 61.4 (+, 2-CH), 87.0 (+, 6-CH), 116.1 (q, C-2′),
125.7 (+, C-3′), 127.1 (+, C-5′), 128.0 (+, C-4′), 133.9 (+, C-6′), 139.9 (q, C-1′).
MS (FAB): m/z (%) = 292/294 (100/98) [MH+], 263/265 (26/25) [C13H14NBr+], 234/236 (9/11). MS (EI): m/z (%) = 263/265 (C13H14NBr+, 20/20) [M+ - N2], 235/236 (96/100), 222/224 (5/5), 208/210 (9/8), 197/199 (22/18), 182/184 (24/33),
171/173 (30/29), 155/157 (27/26), 143 (7), 130 (15), 118 (11), 93 (90), 91 (32), 77
(32). HRMS (EI): calcd 291.0371 for M+ resp. 263.0310 for (M+ - N2), found 263.0308. Product undergoes thermal decomposition while GC and EI measurements
are taken.
<A NAME="RG20203ST-39">39</A>
Lipschutz BH.
Blomgren PA.
Org. Lett.
2001,
3:
1869
<A NAME="RG20203ST-40">40</A>
Bräse S.
Chim. Oggi
2000,
18 (9):
14