Abstract
The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic β-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca2+-dependent exocytosis. Simultaneously, GLP-1 promotes Ca2+ influx and mobilizes an intracellular source of Ca2+. GLP-1 sensitizes intracellular Ca2+ release channels (ryanodine and IP3 receptors) to stimulatory effects of Ca2+, thereby promoting Ca2+-induced Ca2+ release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K+ channels (K-ATP), membrane depolarization, and influx of Ca2+ through voltage-dependent Ca2+ channels (VDCCs). Ca2+ influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca2+ release channels are sensitized by GLP-1, Ca2+ influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no ”fuel” is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new ”feed-forward” hypothesis of β-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects.
Key words
Glucose · GLP-1 · cAMP · PKA · Epac · Insulin secretion
References
-
1
Mojsov S, Weir G C, Habener J F.
Insulinotropin: glucagon-like peptide-1-(7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas.
J Clin Invest.
1987;
79
616-619
-
2
Thorens B.
Expression cloning of the pancreatic β-cell receptor for the gluco-incretin hormone glucagon-like peptide-1.
Proc Natl Acad Sci (USA).
1992;
89
8641-8645
-
3
Nathan D M, Schreiber E, Mojsov S, Habener J F.
Insulinotropic action of glucagon-like peptide-1-(7-37) in diabetic and nondiabetic subjects.
Diabetes Care.
1992;
15
270-276
-
4
Gutniak M K, Orskov C, Holst J J, Ahren B, Efendic S.
Antidiabetogenic effect of glucagon-like peptide-1-(7-36)-amide in normal subjects and patients with diabetes mellitus.
N Eng J Med.
1992;
326
1316-1322
-
5
Drucker D J, Philippe H, Mojsov S, Chick W L, Habener J F.
Glucagon-like peptide-1 stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line.
Proc Natl Acad Sci (USA).
1987;
84
3434-3438
-
6
Fehmann H C, Habener J F.
Insulinotropic hormone glucagon-like peptide-1-(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma βTC-1 cells.
Endocrinology.
1992;
130
159-166
-
7
Kreymann B, Ghatei M A, Williams G, Bloom S R.
Glucagon-like peptide-1-(7-36): A physiological incretin in man.
Lancet.
1987;
2
300-1304
-
8
Holst J J.
Glucagon-like peptide-1: A newly discovered gastrointestinal hormone.
Gastroenterology.
1994;
107
848-1855
-
9
Xu G, Stoffers D A, Habener J F, Bonner-Weir S.
Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats.
Diabetes.
1999;
48
2270-2276
-
10
Stoffers D A, Kieffer T J, Hussain M A, Drucker D J, Bonner-Weir S, Habener J F, Egan J M.
Insulinotropic glucagon-like peptide-1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas.
Diabetes.
2000;
49
741-748
-
11
Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan D M, Perfetti R.
Glucagon-like peptide-1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets.
Endocrinology.
2003;
144
5149-5158
-
12
Li Y, Hansotia T, Yusta B, Ris F, Halban P A, Drucker D J.
Glucagon-like peptide-1 receptor signaling modulates β-cell apoptosis.
J Biol Chem.
2003;
278
471-478
-
13
Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker P L.
Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 β-cells.
Diabetologia.
2004;
47
478-487
-
14
Buteau J, El-Assaad W, Rhodes C J, Rosenberg L, Joly E, Prentki M.
Glucagon-like peptide-1 prevents β-cell glucolipotoxicity.
Diabetologia.
2004;
47
806-815
-
15
Buteau J, Foisy S, Rhodes C J, Carpenter L, Biden T J, Prentki M.
Protein kinase C-ζ activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation.
Diabetes.
2001;
50
2237-2243
-
16
Buteau J, Foisy S, Joly E, Prentki M.
Glucagon-like peptide-1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor.
Diabetes.
2003;
52
124-132
-
17
Jhala U S, Canettieri G, Screaton R A, Kulkarni R N, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M.
cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2.
Genes Dev.
2003;
17
1575-1580
-
18
Trumper K, Trumper A, Trusheim H, Arnold R, Goke B, Horsch D.
Integrative mitogenic role of protein kinase B/Akt in β-cells.
Ann N Y Acad Sci.
2000;
921
242-250
-
19
Dalle S, Longuet C, Costes S, Broca C, Faruque O, Fontes G, Hani el H, Bataille D.
Glucagon promotes cAMP-response element-binding protein phosphorylation via activation of ERK1/2 in MIN6 cell line and isolated islets of Langerhans.
J Biol Chem.
2004;
279
20345-20355
-
20
Buteau J, Roduit R, Susini S, Prentki M.
Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1) -cells.
Diabetologia.
1999;
42
856-864
-
21
Wang X, Zhou J, Doyle M E, Egan J M.
Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic β-cells by a cyclic adenosine monophosphate/protein kinase-A-dependent mechanism.
Endocrinology.
2001;
142
1820-1827
-
22
Holz G G, Chepurny O G.
Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus.
Curr Med Chem.
2003;
10
2471-2483
-
23
Ahren B, Landin-Olsson M, Jansson P A, Svensson M, Holmes D, Schweizer A.
Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes.
J Clin Endocrinol Metab.
2004;
89
2078-2084
-
24
Gromada J, Holst J J, Rorsman P.
Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide-1.
Pflugers Arch.
1998;
435
583-594
-
25
Fridolf T, Ahren B.
GLP-1(7-36)-amide stimulates insulin secretion in rat islets: studies on the mode of action.
Diabetes Res.
1991;
16
185-191
-
26
Holz G G, Habener J F.
Signal Transduction Crosstalk in the Endocrine System: Pancreatic β-Cells and the Glucose Competence Concept.
Trends In Biochemical Sciences.
1992;
17
388-393
-
27
Holz G G, Kuhtreiber W M, Habener J F.
Pancreatic β-cells are rendered glucose competent by the insulinotropic hormone glucagon-like peptide-1-(7-37).
Nature.
1993;
361
362-365
-
28
Henquin J C.
Triggering and amplifying pathways of regulation of insulin secretion by glucose.
Diabetes.
2000;
49
1751-1760
-
29
Tsuboi T, da Silva X avier, Holz G G, Jouaville L S, Thomas A P, Rutter G A.
Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 β-cells.
Biochem J.
2003;
369
287-299
-
30
Light P E, Manning F, Fox J E, Riedel M J, Wheeler M B.
Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a PKA- and ADP-dependent mechanism.
Mol Endocrinol.
2002;
16
2135-2144
-
31
Suga S, Kanno T, Ogawa Y, Takeo T, Kamimura N, Wakui M.
cAMP-independent decrease of ATP-sensitive K+ channel activity by GLP-1 in rat pancreatic β-cells.
Pflugers Arch.
2000;
440
566-572
-
32
Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J.
cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets.
Diabetes.
2002;
51
3440-3449
-
33
Shiota C, Larsson O, Shelton K D, Shiota M, Efanov A M, Hoy M, Lindner J, Kooptiwut S, Juntti-Berggren L, Gromada J, Berggren P O, Magnuson M A.
Sulfonylurea receptor type 1 knock-out mice have intact feeding stimulated insulin secretion despite marked impairment in their response to glucose.
J Biol Chem.
2002;
277
37176-37183
-
34
Eliasson L, Ma X, Renstrom E, Barg S, Berggren P O, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P.
SUR1 Regulates PKA-independent cAMP-induced granule priming in mouse pancreatic β-cells.
J Gen Physiol.
2003;
121
181-197
-
35
Doliba N M, Qin W, Vatamaniuk M Z, Li C, Zelent D, Najafi H, Buettger C W, Collins H W, Carr R D, Magnuson M A, Matschinsky F M.
Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine.
Am J Physiol Endocrinol Metab.
2004;
286
E834-843
-
36
Prentki M, Corkey B E.
Are the β-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM?.
Diabetes.
1996;
45
273-283
-
37
Cunningham B A, Richard A M, Dillon J S, Daley J T, Civelek V N, Deeney J T, Yaney G C, Corkey B E, Tornheim K.
Glucagon-like peptide-1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets.
Biochem J.
2003;
369
173-178
-
38
Holz G G.
Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell.
Diabetes.
2004;
53
5-13
-
39
Gromada J, Bokvist K, Ding W G, Holst J J, Nielsen J H, Rorsman P.
Glucagon-like peptide-1(7-36)-amide stimulates exocytosis in human pancreatic β-cells by both proximal and distal regulatory steps in stimulus-secretion coupling.
Diabetes.
1998;
47
57-65
-
40
Takahashi N, Kadowaki T, Yazaki Y, Ellis-Davies G CR, Miyashita Y, Kasai H.
Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic β-cells.
Proc Natl Acad Sci (USA).
1999;
96
760-765
-
41
Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S.
Critical role of cAMP-GEFII Rim2 complex in incretin-potentiated insulin secretion.
J Biol Chem.
2001;
276
46046-46053
-
42
Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S.
Piccolo, a Ca2+ sensor in pancreatic β-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis.
J Biol Chem.
2002;
277
50497-50502
-
43
Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S.
Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis.
J Biol Chem.
2004;
279
7956-7961
-
44
Yada T, Itoh K, Nakata M.
Glucagon-like peptide-1-(7-36)-amide and a rise in cyclic adenosine 3′,5′-monophosphate increase cytosolic free Ca2+ in rat pancreatic β-cells by enhancing Ca2+ channel activity.
Endocrinology.
1993;
133
1685-1692
-
45
Bode H P, Moorman B, Dabew R, Goke B.
Glucagon-like peptide-1 elevates cytosolic calcium in pancreatic β-cells independently of protein kinase A.
Endocrinology.
1999;
140
3919-3927
-
46
Holz G G, Leech C A, Habener J F.
Activation of a cAMP-regulated Ca2+-signalling pathway in pancreatic β-cells by the insulinotropic hormone glucagon-like peptide-1.
J Biol Chem.
1995;
270
17749-17757
-
47
Holz G G, Leech C A, Heller R S, Castonguay M, Habener J F.
cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic β-cells.
J Biol Chem.
1999;
274
14147-14156
-
48
Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff B S, Rorsman P.
Glucagon-like peptide-1 increases cytoplasmic calcium in insulin-secreting βTC-3-cells by enhancement of intracellular calcium mobilization.
Diabetes.
1995;
44
767-774
-
49
Kang G, Chepurny O G, Holz G G.
cAMP-regulated guanine nucleotide exchange factor-II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic βeta-cells.
J Physiol (Lond.).
2001;
536
375-385
-
50
MacDonald P E, Wang X, Xia F, El-Kholy W, Targonsky E D, Tsushima R G, Wheeler M B.
Antagonism of rat β-cell voltage-dependent K+ currents by exendin-4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways.
J Biol Chem.
2003;
278
52446-52453
-
51
Kang G, Joseph J W, Chepurny O G, Monaco M, Wheeler M B, Bos J L, Schwede F, Genieser H G, Holz G G.
Epac-selective cAMP analog 8-pCPT-2’-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic β-cells.
J Biol Chem.
2003;
278
8279-8285
-
52
Islam M S, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekstrom T J, Westerblad H, Andrade F H, Berggren P O.
In situ activation of the type 2 ryanodine receptor in pancreatic β-cells requires cAMP-dependent phosphorylation.
Proc Natl Acad Sci (USA).
1998;
95
6145-6150
-
53
Liu Y J, Grapengiesser E, Gylfe E, Hellman B.
Crosstalk between the cAMP and inositol trisphosphate-signalling pathways in pancreatic β-cells.
Archiv Biochem Biophys.
1996;
334
295-302
-
54
Nakagaki I, Sasaki S, Hori S, Kondo H.
Ca2+ and electrolyte mobilization following agonist application to the pancreatic β-cell line HIT.
Pflugers Arch.
2000;
440
828-834
-
55
Mitchell K J, Lai F A, Rutter G A.
Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic β-cells (MIN6).
J Biol Chem.
2003;
278
11057-11064
-
56
Kang G, Holz G G.
Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells.
J Physiol (Lond.).
2003;
546
175-189
-
57
Zawalich W S, Zawalich K C, Rasmussen H.
Influence of glucagon-like peptide-1 on β-cell responsiveness.
Regul Pept.
1992;
44
277-283
-
58
Leclercq-Meyer V, Malaisse W J.
Potentiation of glucagon-like peptide-1 insulinotropic action by succinic acid dimethyl ester.
Life Sciences.
1996;
58
1195-1199
-
59
Jouaville L S, Pinton P, Bastianutto C, Rutter G A, Rizzuto R.
Regulation of mitochondrial ATP synthesis by Ca2+: Evidence for a long-term metabolic priming.
Proc Natl Acad Sci (USA).
1999;
96
13807-13812
-
60
Ainscow E K, Rutter G A.
Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets.
Biochem J.
2001;
353
175-180
-
61
Rutter G A, Rizzuto R.
Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection.
Trends Biochem Sci.
2000;
25
215-221
-
62
He L P, Mears D, Atwater I, Kitasato H.
Glucagon induces suppression of ATP-sensitive K+ channel activity through a Ca2+/calmodulin-dependent pathway in mouse pancreatic β-cells.
J Membr Biol.
1998;
166
237-244
-
63
He L P, Kitasato H.
Glucagon induces Ca2+-dependent increase of reduced pyridine nucleotides in mouse pancreatic β-cells.
Biochim Biophys Acta.
1996;
131
325-323
-
64
Eddlestone G T, Oldham S B, Lipson L G, Premdas F H, Beigelman P M.
Electrical activity, cAMP concentration, and insulin release in mouse islets of Langerhans.
Am J Physiol.
1985;
248
C145-C153
-
65
Barnett D W, Pressel D M, Chern H T, Scharp D W, Misler S.
cAMP-enhancing agents ”permit” stimulus secretion coupling in canine pancreatic islet β-cells.
J Membrane Biol.
1994;
138
113-120
-
66
Henquin J C, Schmeer W, Meissner H P.
Forskolin, an activator of adenylate cyclase, increases calcium-dependent electrical activity induced by glucose in mouse pancreatic β-cells.
Endocrinology.
1983;
112
2218-2220
-
67
Henquin J C, Meissner H P.
The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic β-cells: studies with forskolin.
Endocrinology.
1984;
115
1125-1134
-
68
Ikeuchi M, Cook D L.
Glucagon and forskolin have dual effects upon islet cell electrical activity.
Life Sci.
1984;
35
685-691
G. G. Holz, Ph. D.
Associate Professor · Department of Physiology and Neuroscience
Medical Sciences Building Room 442 · 550 First Avenue · New York University School of Medicine · New York, NY 10016 · U.S.A.
Telefon: +1 (212) 263 54 34
Fax: +1 (212) 689 90 60
eMail: holzg01@popmail.med.nyu.edu