Subscribe to RSS
DOI: 10.1055/s-2004-826165
New Insights Concerning the Glucose-dependent Insulin Secretagogue Action of Glucagon-like Peptide-1 in Pancreatic β-Cells
Publication History
Received 7 July 2004
Accepted after revision 18 August 2004
Publication Date:
18 January 2005 (online)
Abstract
The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic β-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca2+-dependent exocytosis. Simultaneously, GLP-1 promotes Ca2+ influx and mobilizes an intracellular source of Ca2+. GLP-1 sensitizes intracellular Ca2+ release channels (ryanodine and IP3 receptors) to stimulatory effects of Ca2+, thereby promoting Ca2+-induced Ca2+ release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K+ channels (K-ATP), membrane depolarization, and influx of Ca2+ through voltage-dependent Ca2+ channels (VDCCs). Ca2+ influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca2+ release channels are sensitized by GLP-1, Ca2+ influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no ”fuel” is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new ”feed-forward” hypothesis of β-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects.
Key words
Glucose · GLP-1 · cAMP · PKA · Epac · Insulin secretion
References
- 1 Mojsov S, Weir G C, Habener J F. Insulinotropin: glucagon-like peptide-1-(7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987; 79 616-619
- 2 Thorens B. Expression cloning of the pancreatic β-cell receptor for the gluco-incretin hormone glucagon-like peptide-1. Proc Natl Acad Sci (USA). 1992; 89 8641-8645
- 3 Nathan D M, Schreiber E, Mojsov S, Habener J F. Insulinotropic action of glucagon-like peptide-1-(7-37) in diabetic and nondiabetic subjects. Diabetes Care. 1992; 15 270-276
- 4 Gutniak M K, Orskov C, Holst J J, Ahren B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1-(7-36)-amide in normal subjects and patients with diabetes mellitus. N Eng J Med. 1992; 326 1316-1322
- 5 Drucker D J, Philippe H, Mojsov S, Chick W L, Habener J F. Glucagon-like peptide-1 stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci (USA). 1987; 84 3434-3438
- 6 Fehmann H C, Habener J F. Insulinotropic hormone glucagon-like peptide-1-(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma βTC-1 cells. Endocrinology. 1992; 130 159-166
- 7 Kreymann B, Ghatei M A, Williams G, Bloom S R. Glucagon-like peptide-1-(7-36): A physiological incretin in man. Lancet. 1987; 2 300-1304
- 8 Holst J J. Glucagon-like peptide-1: A newly discovered gastrointestinal hormone. Gastroenterology. 1994; 107 848-1855
- 9 Xu G, Stoffers D A, Habener J F, Bonner-Weir S. Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999; 48 2270-2276
- 10 Stoffers D A, Kieffer T J, Hussain M A, Drucker D J, Bonner-Weir S, Habener J F, Egan J M. Insulinotropic glucagon-like peptide-1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes. 2000; 49 741-748
- 11 Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan D M, Perfetti R. Glucagon-like peptide-1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003; 144 5149-5158
- 12 Li Y, Hansotia T, Yusta B, Ris F, Halban P A, Drucker D J. Glucagon-like peptide-1 receptor signaling modulates β-cell apoptosis. J Biol Chem. 2003; 278 471-478
- 13 Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker P L. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 β-cells. Diabetologia. 2004; 47 478-487
- 14 Buteau J, El-Assaad W, Rhodes C J, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents β-cell glucolipotoxicity. Diabetologia. 2004; 47 806-815
- 15 Buteau J, Foisy S, Rhodes C J, Carpenter L, Biden T J, Prentki M. Protein kinase C-ζ activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation. Diabetes. 2001; 50 2237-2243
- 16 Buteau J, Foisy S, Joly E, Prentki M. Glucagon-like peptide-1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes. 2003; 52 124-132
- 17 Jhala U S, Canettieri G, Screaton R A, Kulkarni R N, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev. 2003; 17 1575-1580
- 18 Trumper K, Trumper A, Trusheim H, Arnold R, Goke B, Horsch D. Integrative mitogenic role of protein kinase B/Akt in β-cells. Ann N Y Acad Sci. 2000; 921 242-250
- 19 Dalle S, Longuet C, Costes S, Broca C, Faruque O, Fontes G, Hani el H, Bataille D. Glucagon promotes cAMP-response element-binding protein phosphorylation via activation of ERK1/2 in MIN6 cell line and isolated islets of Langerhans. J Biol Chem. 2004; 279 20345-20355
- 20 Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1) -cells. Diabetologia. 1999; 42 856-864
- 21 Wang X, Zhou J, Doyle M E, Egan J M. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic β-cells by a cyclic adenosine monophosphate/protein kinase-A-dependent mechanism. Endocrinology. 2001; 142 1820-1827
- 22 Holz G G, Chepurny O G. Glucagon-like peptide-1 synthetic analogs: new therapeutic agents for use in the treatment of diabetes mellitus. Curr Med Chem. 2003; 10 2471-2483
- 23 Ahren B, Landin-Olsson M, Jansson P A, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab. 2004; 89 2078-2084
- 24 Gromada J, Holst J J, Rorsman P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide-1. Pflugers Arch. 1998; 435 583-594
- 25 Fridolf T, Ahren B. GLP-1(7-36)-amide stimulates insulin secretion in rat islets: studies on the mode of action. Diabetes Res. 1991; 16 185-191
- 26 Holz G G, Habener J F. Signal Transduction Crosstalk in the Endocrine System: Pancreatic β-Cells and the Glucose Competence Concept. Trends In Biochemical Sciences. 1992; 17 388-393
- 27 Holz G G, Kuhtreiber W M, Habener J F. Pancreatic β-cells are rendered glucose competent by the insulinotropic hormone glucagon-like peptide-1-(7-37). Nature. 1993; 361 362-365
- 28 Henquin J C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000; 49 1751-1760
- 29 Tsuboi T, da Silva X avier, Holz G G, Jouaville L S, Thomas A P, Rutter G A. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 β-cells. Biochem J. 2003; 369 287-299
- 30 Light P E, Manning F, Fox J E, Riedel M J, Wheeler M B. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a PKA- and ADP-dependent mechanism. Mol Endocrinol. 2002; 16 2135-2144
- 31 Suga S, Kanno T, Ogawa Y, Takeo T, Kamimura N, Wakui M. cAMP-independent decrease of ATP-sensitive K+ channel activity by GLP-1 in rat pancreatic β-cells. Pflugers Arch. 2000; 440 566-572
- 32 Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes. 2002; 51 3440-3449
- 33 Shiota C, Larsson O, Shelton K D, Shiota M, Efanov A M, Hoy M, Lindner J, Kooptiwut S, Juntti-Berggren L, Gromada J, Berggren P O, Magnuson M A. Sulfonylurea receptor type 1 knock-out mice have intact feeding stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem. 2002; 277 37176-37183
- 34 Eliasson L, Ma X, Renstrom E, Barg S, Berggren P O, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P. SUR1 Regulates PKA-independent cAMP-induced granule priming in mouse pancreatic β-cells. J Gen Physiol. 2003; 121 181-197
- 35 Doliba N M, Qin W, Vatamaniuk M Z, Li C, Zelent D, Najafi H, Buettger C W, Collins H W, Carr R D, Magnuson M A, Matschinsky F M. Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Am J Physiol Endocrinol Metab. 2004; 286 E834-843
- 36 Prentki M, Corkey B E. Are the β-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM?. Diabetes. 1996; 45 273-283
- 37 Cunningham B A, Richard A M, Dillon J S, Daley J T, Civelek V N, Deeney J T, Yaney G C, Corkey B E, Tornheim K. Glucagon-like peptide-1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets. Biochem J. 2003; 369 173-178
- 38 Holz G G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell. Diabetes. 2004; 53 5-13
- 39 Gromada J, Bokvist K, Ding W G, Holst J J, Nielsen J H, Rorsman P. Glucagon-like peptide-1(7-36)-amide stimulates exocytosis in human pancreatic β-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes. 1998; 47 57-65
- 40 Takahashi N, Kadowaki T, Yazaki Y, Ellis-Davies G CR, Miyashita Y, Kasai H. Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic β-cells. Proc Natl Acad Sci (USA). 1999; 96 760-765
- 41 Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S. Critical role of cAMP-GEFII Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem. 2001; 276 46046-46053
- 42 Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S. Piccolo, a Ca2+ sensor in pancreatic β-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis. J Biol Chem. 2002; 277 50497-50502
- 43 Shibasaki T, Sunaga Y, Fujimoto K, Kashima Y, Seino S. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis. J Biol Chem. 2004; 279 7956-7961
- 44 Yada T, Itoh K, Nakata M. Glucagon-like peptide-1-(7-36)-amide and a rise in cyclic adenosine 3′,5′-monophosphate increase cytosolic free Ca2+ in rat pancreatic β-cells by enhancing Ca2+ channel activity. Endocrinology. 1993; 133 1685-1692
- 45 Bode H P, Moorman B, Dabew R, Goke B. Glucagon-like peptide-1 elevates cytosolic calcium in pancreatic β-cells independently of protein kinase A. Endocrinology. 1999; 140 3919-3927
- 46 Holz G G, Leech C A, Habener J F. Activation of a cAMP-regulated Ca2+-signalling pathway in pancreatic β-cells by the insulinotropic hormone glucagon-like peptide-1. J Biol Chem. 1995; 270 17749-17757
- 47 Holz G G, Leech C A, Heller R S, Castonguay M, Habener J F. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic β-cells. J Biol Chem. 1999; 274 14147-14156
- 48 Gromada J, Dissing S, Bokvist K, Renstrom E, Frokjaer-Jensen J, Wulff B S, Rorsman P. Glucagon-like peptide-1 increases cytoplasmic calcium in insulin-secreting βTC-3-cells by enhancement of intracellular calcium mobilization. Diabetes. 1995; 44 767-774
- 49 Kang G, Chepurny O G, Holz G G. cAMP-regulated guanine nucleotide exchange factor-II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic βeta-cells. J Physiol (Lond.). 2001; 536 375-385
- 50 MacDonald P E, Wang X, Xia F, El-Kholy W, Targonsky E D, Tsushima R G, Wheeler M B. Antagonism of rat β-cell voltage-dependent K+ currents by exendin-4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem. 2003; 278 52446-52453
- 51 Kang G, Joseph J W, Chepurny O G, Monaco M, Wheeler M B, Bos J L, Schwede F, Genieser H G, Holz G G. Epac-selective cAMP analog 8-pCPT-2’-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic β-cells. J Biol Chem. 2003; 278 8279-8285
- 52 Islam M S, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekstrom T J, Westerblad H, Andrade F H, Berggren P O. In situ activation of the type 2 ryanodine receptor in pancreatic β-cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci (USA). 1998; 95 6145-6150
- 53 Liu Y J, Grapengiesser E, Gylfe E, Hellman B. Crosstalk between the cAMP and inositol trisphosphate-signalling pathways in pancreatic β-cells. Archiv Biochem Biophys. 1996; 334 295-302
- 54 Nakagaki I, Sasaki S, Hori S, Kondo H. Ca2+ and electrolyte mobilization following agonist application to the pancreatic β-cell line HIT. Pflugers Arch. 2000; 440 828-834
- 55 Mitchell K J, Lai F A, Rutter G A. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic β-cells (MIN6). J Biol Chem. 2003; 278 11057-11064
- 56 Kang G, Holz G G. Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells. J Physiol (Lond.). 2003; 546 175-189
- 57 Zawalich W S, Zawalich K C, Rasmussen H. Influence of glucagon-like peptide-1 on β-cell responsiveness. Regul Pept. 1992; 44 277-283
- 58 Leclercq-Meyer V, Malaisse W J. Potentiation of glucagon-like peptide-1 insulinotropic action by succinic acid dimethyl ester. Life Sciences. 1996; 58 1195-1199
- 59 Jouaville L S, Pinton P, Bastianutto C, Rutter G A, Rizzuto R. Regulation of mitochondrial ATP synthesis by Ca2+: Evidence for a long-term metabolic priming. Proc Natl Acad Sci (USA). 1999; 96 13807-13812
- 60 Ainscow E K, Rutter G A. Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets. Biochem J. 2001; 353 175-180
- 61 Rutter G A, Rizzuto R. Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci. 2000; 25 215-221
- 62 He L P, Mears D, Atwater I, Kitasato H. Glucagon induces suppression of ATP-sensitive K+ channel activity through a Ca2+/calmodulin-dependent pathway in mouse pancreatic β-cells. J Membr Biol. 1998; 166 237-244
- 63 He L P, Kitasato H. Glucagon induces Ca2+-dependent increase of reduced pyridine nucleotides in mouse pancreatic β-cells. Biochim Biophys Acta. 1996; 131 325-323
- 64 Eddlestone G T, Oldham S B, Lipson L G, Premdas F H, Beigelman P M. Electrical activity, cAMP concentration, and insulin release in mouse islets of Langerhans. Am J Physiol. 1985; 248 C145-C153
- 65 Barnett D W, Pressel D M, Chern H T, Scharp D W, Misler S. cAMP-enhancing agents ”permit” stimulus secretion coupling in canine pancreatic islet β-cells. J Membrane Biol. 1994; 138 113-120
- 66 Henquin J C, Schmeer W, Meissner H P. Forskolin, an activator of adenylate cyclase, increases calcium-dependent electrical activity induced by glucose in mouse pancreatic β-cells. Endocrinology. 1983; 112 2218-2220
- 67 Henquin J C, Meissner H P. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic β-cells: studies with forskolin. Endocrinology. 1984; 115 1125-1134
- 68 Ikeuchi M, Cook D L. Glucagon and forskolin have dual effects upon islet cell electrical activity. Life Sci. 1984; 35 685-691
G. G. Holz, Ph. D.
Associate Professor · Department of Physiology and Neuroscience
Medical Sciences Building Room 442 · 550 First Avenue · New York University School of Medicine · New York, NY 10016 · U.S.A.
Phone: +1 (212) 263 54 34
Fax: +1 (212) 689 90 60
Email: holzg01@popmail.med.nyu.edu