Abstract
Bioassay-guided fractionation of the EtOAc-soluble extract of Dendrobium moniliforme afforded a new phenanthraquinone-type metabolite, 7-hydroxy-5,6-dimethoxy-1,4-phenanthrenequinone (1), along with the previously reported 5-hydroxy-3,7-dimethoxy-1,4-phenanthrenequinone (2). The structures of the compounds were identified mainly on the basis of MS and NMR data. Compound 1 inhibited VHR dual-specificity protein tyrosine phosphatase (DS-PTPase) activity in a dose-dependent manner, displaying an IC50 value of 3.0 ± 0.2 μM.
References
-
1
Lyon M A, Ducruet A P, Wipf P, Lazo J S.
Dual-specificity phosphatases as targets for antineoplastic agents.
Nature Review Drug Discovery.
2002;
1
961-76
-
2
Denu J M, Stuckey J A, Saper M A, Dixon J E.
Form and function in protein dephosphorylation.
Cell.
1996;
87
361-4
-
3
Todd J L, Tanner K G, Denu J M.
Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR.
J Biol Chem.
1999;
274
13 271-80
-
4
Alonso A, Saxena M, Willams S, Mustelin T.
Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation.
J Biol Chem.
2001;
276
4766-71
-
5
Usui T, Kojima S, Kidokoro S, Ueda K, Osada H, Sodeoka M.
Design and synthesis of a dimeric derivative of RK-682 with increased inhibitory activity against VHR, a dual-specificity ERK phosphatase: implications for the molecular mechanism of the inhibition.
Chem Biol.
2001;
8
1209-20
-
6
Lee M S, Oh W K, Kim B Y, Ahn S C, Kang D O, Sohn C B, Osada H, Ahn J S.
Inhibition of VHR dual-specificity protein tyrosine phosphatase activity by flavonoids isolated from Scutellaria baicalensis: structure-activity relationships.
Planta Medica.
2002;
68
1063-5
-
7
Vogt A, Cooley K A, Brisson M, Tarpley M G, Wipf P, Lazo J S.
Cell-active dual specificity phosphatase inhibitors identified by high-content screening.
Chem Biol.
2003;
10
733-42
-
8
Park J, Fu H, Pei D.
Peptidyl aldehydes as slow-binding inhibitors of dual-specificity phosphatases.
Bioorg Med Chem Lett.
2004;
14
685-7
-
9
Lin T H, Chang S J, Chen C C, Wang J P, Tsao L T.
Two phenanthraquinones from Dendrobium moniliforme
.
J Nat Prod.
2001;
64
1084-6
-
10 Bensky D, Gamble A. Chinese Herbal Medicine. Seattle; Eastland Press 1986: pp 522-3
-
11
Krohn K, Loock U, Paavilainen K, Hausen B, Schmalle H W, Kiesele H.
Synthesis and electrochemistry of annoquinone A, cypripedin methyl ether, denbinobin and related 1,4-phenanthrenequinones.
ARKIVOC [online computer file].
2001;
2
973-1003
-
12
Kraus G A, Melekhov A, Carpenter S, Wannemuhler Y, Petrich J.
Phenanthrenequinone antiretroviral agents.
Bioorg Med Chem Lett.
2000;
10
9-11
-
13
Guzei I A, Melekhov A, Kraus G A.
A new strained angularly fused ring system: 8-hydroxy-1,2,3-trimethoxybenz[a]anthracene-7,12-dione.
Acta Crystallographica, Section C: Crystal Structure Communications.
1999;
C55
620-2
-
14
Kraus G A, Melekhov A.
Synthesis of 1,4-phenanthrenequinones via stannic chloride-induced cyclizations.
J Org Chem.
1999;
64
1720-2
-
15
Hamaguchi T, Sudo T, Osada H.
RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1 phase.
FEBS Letters.
1995;
372
54-8
Dr. Jong Seog Ahn
Korea Research Institute of Bioscience and Biotechnology (KRIBB)
52 Eoeun-dong
Yusong
Taejeon 305-333
Korea
Fax: +82-42-860-4595
Email: jsahn@kribb.re.kr