Subscribe to RSS
DOI: 10.1055/s-2004-829052
Synthetic Development of Radicicol and Cycloproparadicicol: Highly Promising Anticancer Agents Targeting Hsp90
Publication History
Publication Date:
08 June 2004 (online)
Abstract
Molecular chaperone Hsp90 has emerged as one of the most exciting new targets for anticancer therapy. Natural product-based modulators, such as radicicol (1), inhibit Hsp90 and induce the breakdown of its client proteins, thereby blocking multiple critical oncogenic pathways. Several total synthesis endeavors directed toward radicicol have been accomplished. Cycloproparadicicol (2), a potent Hsp90 inhibitor and highly promising pre-clinical anticancer agent, was discovered through a convergent total synthesis approach. In an effort to devise a more efficient and concise route to reach 2, a novel ‘ynolide’ protocol, featuring an ynolide-bissiloxydiene Diels-Alder addition, was designed and reduced to practice. This methodology was also extended to aigialomycin D.
-
1 Introduction
-
2 First Total Synthesis of Radicicol
-
3 First Generation Convergent Total Synthesis of Radicicol and the Discovery of the Promising Anticancer Agent, Cycloproparadicicol
-
4 ‘Ynolide Approach’: Second Generation Total Synthesis of Cycloproparadicicol
-
4.1 Development of ‘Ynolide’ Methodology
-
4.2 Scope and Limitations of the New Strategy
-
4.2.1 Extension of ‘Ynolide Approach’ to another Resorcinylic Macrolide: Aigialomycin D
-
4.2.2 Limitations
-
5 Conclusions and Future Directions
Key words
radicicol - cycloproparadicicol - Hsp90 - anticancer - ynolide
- 1
Isaacs JS.Xu W.Neckers L. Cancer Cell 2003, 3: 213 - 2
Banerji U.Judson I.Workman P. Curr. Cancer Drug Targets 2003, 3: 385 - 3
Chiosis G.Lucas B.Huezo H.Solit D.Basso A.Rosen N. Curr. Cancer Drug Targets 2003, 3: 371 - 4
Newman DJ.Cragg GM.Holbeck S.Sausville EA. Curr. Cancer Drug Targets 2002, 2: 279 - 5
Sausville EA.Tomaszewski JE.Ivy P. Curr. Cancer Drug Targets 2003, 3: 377 - 6
Kamal A.Thao L.Sensintaffar J.Zhang L.Boehm MF.Fritz LC.Burrows FJ. Nature 2003, 425: 407 - 7
Rinehart KL.Sasaki K.Slomp G.Grostic MF.Olson EC. J. Am. Chem. Soc. 1970, 92: 7591 - 8
Uehara Y.Hori M.Takeuchi T.Umezawa H. Jpn. J. Cancer Res. 1985, 76: 672 - 9
Delmotte P.Delmotte-Plaquee J. Nature 1953, 171: 344 - 10
Kuduk SD.Harris CR.Zheng FF.Sepp-Lorenzino L.Ouerfelli Q.Rosen N.Danishefsky SJ. Bioorg. Med. Chem. Lett. 2000, 10: 1303 - 11
Kuduk SD.Zheng FF.Sepp-Lorenzino L.Rosen N.Danishefsky SJ. Bioorg. Med. Chem. Lett. 1999, 9: 1233 - 12
Zheng FF.Kuduk SD.Chiosis G.Munster PN.Sepp-Lorenzino L.Danishefsky SJ.Rosen N. Cancer Res. 2000, 60: 2090 - 13
Yamamoto K.Garbaccio RM.Stachel SJ.Solit DB.Chiosis G.Rosen N.Danishefsky SJ. Angew. Chem. Int. Ed. 2003, 42: 1280 - 14
Agatsuma T.Ogawa H.Akasaka K.Asai A.Yamashita Y.Mizukami T.Akinaga S.Saitoh Y. Bioorg. Med. Chem. 2002, 10: 3445 - 15
Chou TC.Zhang XG.Harris CR.Kuduk SD.Balog A.Savin KA.Bertino JR.Danishefsky SJ. Proc. Natl. Acad. Sci. U.S.A. 1998, 95: 15798 - 16
Chou TC.Zhang XG.Balog A.Su DS.Meng DF.Savin K.Bertino JR.Danishefsky SJ. Proc. Natl. Acad. Sci. U.S.A. 1998, 95: 9642 - 17
Yang Z.-Q.Danishefsky SJ. J. Am. Chem. Soc. 2003, 125: 9602 - 18
McCapra F.Scott AI.Delmotte P.Delmotte-Plaquee J.Bhacca NS. Tetrahedron Lett. 1964, 869 - 19
Mirrington RN.Ritchie E.Shoppee CW.Taylor WC.Sternhell S. Tetrahedron Lett. 1964, 365 - 20
Cutler HG.Arrendale RF.Springer JP.Cole PD.Roberts RG.Hanlin RT. Agric. Biol. Chem. 1987, 51: 3331 - 21
Lampilas M.Lett R. Tetrahedron Lett. 1992, 33: 777 - 22
Tichkowsky I.Lett R. Tetrahedron Lett. 2002, 43: 3997 - 23
Tichkowsky I.Lett R. Tetrahedron Lett. 2002, 43: 4003 - 24
Lampilas M.Lett R. Tetrahedron Lett. 1992, 33: 773 - 25
Garbaccio RM.Danishefsky SJ. Org. Lett. 2000, 2: 3127 - 26
Garbaccio RM.Stachel SJ.Baeschlin DK.Danishefsky SJ. J. Am. Chem. Soc. 2001, 123: 10903 - 27
Grubbs RH.Miller SJ.Fu GC. Acc. Chem. Res. 1995, 28: 446 - 28
Armstrong SK.Christie BA. Tetrahedron Lett. 1996, 37: 9373 - 29
Furstner A.Seidel G.Kindler N. Tetrahedron 1999, 55: 8215 - 30
Yamamoto K.Biswas K.Gaul C.Danishefsky SJ. Tetrahedron Lett. 2003, 44: 3297 - 32
Ellestad GA.Lovell FM.Perkinson NA.Hargreaves RT.McGahren WJ. J. Org. Chem. 1978, 43: 2339 - 33
Ayer WA.Lee SP.Tsuneda A.Hiratsuka Y. Can. J. Microbiol. 1980, 26: 766 - 34
Ayer WA.Pena-Rodriguez L. Phytochemistry 1987, 26: 1353 - 35
Sugawara F.Kim KW.Kobayashi K.Uzawa J.Yoshida S.Murofushi N.Takahashi N.Strobel GA. Phytochemistry 1992, 31: 1987 - 36
Scholl M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 - 37
Sternberg HW.Greenfield H.Friedel RA.Wotiz J.Markby R.Wender I. J. Am. Chem. Soc. 1954, 76: 1457 - 38 A similar protocol was recently reported:
Young DGJ.Burlison JA.Peters U. J. Org. Chem. 2003, 68: 3494 - 39
Isaka M.Suyarnsestakorn C.Tanticharoen M.Kongsaeree P.Thebtaranonth Y. J. Org. Chem. 2002, 67: 1561 - 40
Geng X.Danishefsky SJ. Org. Lett. 2004, 6: 413 - 41
Yang Z.-Q.Geng X.Solit D.Pratilas CA.Rosen N.Danishefsky SJ. J. Am. Chem. Soc. 2004, manuscript accepted
References
Yang, Z.-Q.; Chou, T. C.; Danishefsky, S. J. unpublished results, 2004.