Abstract
Molecular chaperone Hsp90 has emerged as one of the most exciting new targets for anticancer therapy. Natural product-based modulators, such as radicicol (1 ), inhibit Hsp90 and induce the breakdown of its client proteins, thereby blocking multiple critical oncogenic pathways. Several total synthesis endeavors directed toward radicicol have been accomplished. Cycloproparadicicol (2 ), a potent Hsp90 inhibitor and highly promising pre-clinical anticancer agent, was discovered through a convergent total synthesis approach. In an effort to devise a more efficient and concise route to reach 2 , a novel ‘ynolide’ protocol, featuring an ynolide-bissiloxydiene Diels-Alder addition, was designed and reduced to practice. This methodology was also extended to aigialomycin D.
1 Introduction
2 First Total Synthesis of Radicicol
3 First Generation Convergent Total Synthesis of Radicicol and the Discovery of the Promising Anticancer Agent, Cycloproparadicicol
4 ‘Ynolide Approach’: Second Generation Total Synthesis of Cycloproparadicicol
4.1 Development of ‘Ynolide’ Methodology
4.2 Scope and Limitations of the New Strategy
4.2.1 Extension of ‘Ynolide Approach’ to another Resorcinylic Macrolide: Aigialomycin D
4.2.2 Limitations
5 Conclusions and Future Directions
Key words
radicicol - cycloproparadicicol - Hsp90 - anticancer - ynolide
References
1
Isaacs JS.
Xu W.
Neckers L.
Cancer Cell
2003,
3:
213
2
Banerji U.
Judson I.
Workman P.
Curr. Cancer Drug Targets
2003,
3:
385
3
Chiosis G.
Lucas B.
Huezo H.
Solit D.
Basso A.
Rosen N.
Curr. Cancer Drug Targets
2003,
3:
371
4
Newman DJ.
Cragg GM.
Holbeck S.
Sausville EA.
Curr. Cancer Drug Targets
2002,
2:
279
5
Sausville EA.
Tomaszewski JE.
Ivy P.
Curr. Cancer Drug Targets
2003,
3:
377
6
Kamal A.
Thao L.
Sensintaffar J.
Zhang L.
Boehm MF.
Fritz LC.
Burrows FJ.
Nature
2003,
425:
407
7
Rinehart KL.
Sasaki K.
Slomp G.
Grostic MF.
Olson EC.
J. Am. Chem. Soc.
1970,
92:
7591
8
Uehara Y.
Hori M.
Takeuchi T.
Umezawa H.
Jpn. J. Cancer Res.
1985,
76:
672
9
Delmotte P.
Delmotte-Plaquee J.
Nature
1953,
171:
344
10
Kuduk SD.
Harris CR.
Zheng FF.
Sepp-Lorenzino L.
Ouerfelli Q.
Rosen N.
Danishefsky SJ.
Bioorg. Med. Chem. Lett.
2000,
10:
1303
11
Kuduk SD.
Zheng FF.
Sepp-Lorenzino L.
Rosen N.
Danishefsky SJ.
Bioorg. Med. Chem. Lett.
1999,
9:
1233
12
Zheng FF.
Kuduk SD.
Chiosis G.
Munster PN.
Sepp-Lorenzino L.
Danishefsky SJ.
Rosen N.
Cancer Res.
2000,
60:
2090
13
Yamamoto K.
Garbaccio RM.
Stachel SJ.
Solit DB.
Chiosis G.
Rosen N.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2003,
42:
1280
14
Agatsuma T.
Ogawa H.
Akasaka K.
Asai A.
Yamashita Y.
Mizukami T.
Akinaga S.
Saitoh Y.
Bioorg. Med. Chem.
2002,
10:
3445
15
Chou TC.
Zhang XG.
Harris CR.
Kuduk SD.
Balog A.
Savin KA.
Bertino JR.
Danishefsky SJ.
Proc. Natl. Acad. Sci. U.S.A.
1998,
95:
15798
16
Chou TC.
Zhang XG.
Balog A.
Su DS.
Meng DF.
Savin K.
Bertino JR.
Danishefsky SJ.
Proc. Natl. Acad. Sci. U.S.A.
1998,
95:
9642
17
Yang Z.-Q.
Danishefsky SJ.
J. Am. Chem. Soc.
2003,
125:
9602
18
McCapra F.
Scott AI.
Delmotte P.
Delmotte-Plaquee J.
Bhacca NS.
Tetrahedron Lett.
1964,
869
19
Mirrington RN.
Ritchie E.
Shoppee CW.
Taylor WC.
Sternhell S.
Tetrahedron Lett.
1964,
365
20
Cutler HG.
Arrendale RF.
Springer JP.
Cole PD.
Roberts RG.
Hanlin RT.
Agric. Biol. Chem.
1987,
51:
3331
21
Lampilas M.
Lett R.
Tetrahedron Lett.
1992,
33:
777
22
Tichkowsky I.
Lett R.
Tetrahedron Lett.
2002,
43:
3997
23
Tichkowsky I.
Lett R.
Tetrahedron Lett.
2002,
43:
4003
24
Lampilas M.
Lett R.
Tetrahedron Lett.
1992,
33:
773
25
Garbaccio RM.
Danishefsky SJ.
Org. Lett.
2000,
2:
3127
26
Garbaccio RM.
Stachel SJ.
Baeschlin DK.
Danishefsky SJ.
J. Am. Chem. Soc.
2001,
123:
10903
27
Grubbs RH.
Miller SJ.
Fu GC.
Acc. Chem. Res.
1995,
28:
446
28
Armstrong SK.
Christie BA.
Tetrahedron Lett.
1996,
37:
9373
29
Furstner A.
Seidel G.
Kindler N.
Tetrahedron
1999,
55:
8215
30
Yamamoto K.
Biswas K.
Gaul C.
Danishefsky SJ.
Tetrahedron Lett.
2003,
44:
3297
31 Yang, Z.-Q.; Chou, T. C.; Danishefsky, S. J. unpublished results , 2004 .
32
Ellestad GA.
Lovell FM.
Perkinson NA.
Hargreaves RT.
McGahren WJ.
J. Org. Chem.
1978,
43:
2339
33
Ayer WA.
Lee SP.
Tsuneda A.
Hiratsuka Y.
Can. J. Microbiol.
1980,
26:
766
34
Ayer WA.
Pena-Rodriguez L.
Phytochemistry
1987,
26:
1353
35
Sugawara F.
Kim KW.
Kobayashi K.
Uzawa J.
Yoshida S.
Murofushi N.
Takahashi N.
Strobel GA.
Phytochemistry
1992,
31:
1987
36
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
37
Sternberg HW.
Greenfield H.
Friedel RA.
Wotiz J.
Markby R.
Wender I.
J. Am. Chem. Soc.
1954,
76:
1457
38 A similar protocol was recently reported: Young DGJ.
Burlison JA.
Peters U.
J. Org. Chem.
2003,
68:
3494
39
Isaka M.
Suyarnsestakorn C.
Tanticharoen M.
Kongsaeree P.
Thebtaranonth Y.
J. Org. Chem.
2002,
67:
1561
40
Geng X.
Danishefsky SJ.
Org. Lett.
2004,
6:
413
41
Yang Z.-Q.
Geng X.
Solit D.
Pratilas CA.
Rosen N.
Danishefsky SJ.
J. Am. Chem. Soc.
2004,
manuscript accepted