Abstract
In the field of peptidomimetics, major efforts have been focused on the design and synthesis of conformationally constrained compounds that mimic or induce reverse-turn motifs of peptides and proteins which are thought to play important roles in recognition and biological activity. In this regard, a particularly attractive class of compounds are the azabicyclo[X.Y.0]alkane dipeptide mimics. We present our efforts on the design, synthesis, and conformational analysis of a series of rigid surrogates of dipeptide units for applications within constrained peptide analogues, for employment as inputs for combinatorial science and biological applications. Several general and versatile synthetic approaches have been conceived to deliver a variety of enantiomerically pure azabicycloalkanes. All of these methodologies rely on the construction of a 5-, 6-, or 7-membered lactam on a preformed proline based nucleus. Different strategies were adopted to perform the key cyclization step: a) radical addition to an olefinic double bond, b) alkylation of a malonate enolate, c) ring-closing metathesis (RCM), and d) lactam bond formation.
1 Introduction
2 Synthesis of Azabicyclo[X.Y.0]alkane Amino Acids
2.1 Radical Approach
2.1.1 Synthesis of Cyclization Precursors
2.2 Non-Radical Approaches
2.2.1 Synthesis of 5,5-, 6,5- and 7,5-Fused Bicyclic Lactams via Horner-Emmons Olefination and Lactam Bond Formation
2.2.2 Hydrophobic Appendages at C-3 Position via Malonate Alkylation or RCM
2.2.3 Spiro and Trinuclear Dipeptide Mimics via Lactam Bond Formation or RCM
2.2.4 Heteroatomic Side-Chain Functionalization via Lactam Bond Formation or RCM
3 Conformational Analysis of Azabicycloalkane Amino Acids
3.1 Molecular Modeling
3.2 Discussion of 1 H NMR and IR Data
4 Incorporation of Azabicycloalkane Amino Acids into Bioactive Peptides
4.1 Thrombin Inhibitors
4.2 αν β3 -Integrin Ligands
Key words
peptidomimetic - peptide secondary structure - azabicycloalkane amino acids - biological activity - conformational analysis
References
Recent reviews for design and synthesis of ‘dipeptide-turn mimetics’:
1a
Halab L.
Gosselin F.
Lubell WD.
Biopolym. (Pept. Sci.)
2000,
55:
101
1b
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
1c Reviews for the applications of peptidomimetics including turn mimetics: Giannis A.
Kolter T.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1699
Reviews regarding conformational and topographical considerations in designing peptidomimetics including turn mimetics:
2a
Hruby VJ.
Life Sci.
1982,
31:
189
2b
Hruby VJ.
Al-Obeidi F.
Kazmierski WM.
Biochem. J.
1990,
268:
249
2c
Hruby VJ.
Balse PM.
Curr. Top. Med. Chem.
2000,
7:
945
Indolizidin-2-one amino acids:
3a
Hanessian S.
Ronan B.
Laoui A.
Bioorg. Med. Chem. Lett.
1994,
4:
1397
3b
Li W.
Hanau CE.
d’Avignon A.
Moeller KD.
J. Org. Chem.
1995,
60:
8155
3c
Hanessian S.
McNaughton-Smith G.
Bioorg. Med. Chem. Lett.
1996,
6:
1567
3d
Li W.
Moeller KD.
J. Am. Chem. Soc.
1996,
118:
10106
3e
Wessig P.
Tetrahedron Lett.
1999,
40:
5987
3f
Boatman PD.
Ogbu CO.
Eguchi M.
Kim H.-O.
Nakanishi H.
Cao B.
Shea JP.
Kahn M.
J. Med. Chem.
1999,
42:
1367
3g
Estiarte MA.
Rubiralta M.
Diez A.
Thormann M.
Giralt E.
J. Org. Chem.
2000,
65:
6992
3h
Mulzer J.
Schulzchen F.
Bats J.-W.
Tetrahedron
2000,
56:
4289
3i
Beal LM.
Liu B.
Chu W.
Moeller KD.
Tetrahedron
2000,
56:
10113
3j
Wang W.
Xiong C.
Hruby VJ.
Tetrahedron Lett.
2001,
42:
3159
3k
Zhang X.
Jiang W.
Schmitt AC.
Tetrahedron Lett.
2001,
42:
4943
3l
Millet R.
Domarkas J.
Rombaux P.
Rigo B.
Houssin R.
Hénichart J.-P.
Tetrahedron Lett.
2002,
43:
5087
3m
Zhang J.
Xiong C.
Wang W.
Ying J.
Hruby VJ.
Org. Lett.
2002,
4:
4029
3n
Sun H.
Moeller KD.
Org. Lett.
2002,
4:
1547
3o
Wang W.
Yang J.
Ying J.
Xiong C.
Zhang J.
Cai C.
Hruby VJ.
J. Org. Chem.
2002,
67:
6353
3p
Zhang J.
Xiong C.
Ying J.
Wang W.
Hruby VJ.
Org. Lett.
2003,
5:
3115
3q
Gardiner J.
Abell AD.
Tetrahedron Lett.
2003,
44:
4227
Indolizidin-9-one:
4a
Gosselin F.
Lubell WD.
J. Org. Chem.
1998,
63:
7463
4b
De La Figuera N.
Rosas I.
Garcia-Lopez MT.
Gonzalez-Muniz R.
J. Chem. Soc., Chem. Comm.
1994,
613
4c
Lamazzi C.
Carbonnel S.
Calinaud P.
Troin Y.
Heterocycles
2003,
60:
1447
4d
Shimizu M.
Nemoto H.
Kakuda H.
Takahata H.
Heterocycles
2003,
59:
245
Pyrroloazepinone amino acids:
5a
Tremmel P.
Geyer A.
J. Am. Chem. Soc.
2002,
124:
8548
5b
Gosselin F.
Lubell WD.
J. Org. Chem.
2000,
65:
2163
5c
Geyer A.
Moser F.
Eur. J. Org. Chem.
2000,
1113
Other examples:
6a
Robl JA.
Tetrahedron Lett.
1994,
35:
393
6b
Robl JA.
Cimarusti MP.
Simpkins LM.
Weller HN.
Pan YY.
Malley M.
Di Marco JD.
J. Am. Chem. Soc.
1994,
116:
2348
6c
Robl JA.
Karanewsky DS.
Asaad MM.
Tetrahedron Lett.
1995,
36:
1593
6d
Mueller R.
Revesz L.
Tetrahedron Lett.
1994,
35:
4091
6e
De Lombaert S.
Blanchard L.
Stamford LB.
Sperbeck DM.
Grim MD.
Jenson TM.
Rodriguez HR.
Tetrahedron Lett.
1994,
35:
7513
6f
Lombart HG.
Lubell WD.
J. Org. Chem.
1994,
59:
6147
6g
Nagai U.
Sato K.
Nakamura R.
Kato R.
Tetrahedron
1993,
49:
3577
7
Colombo L.
Di Giacomo M.
Papeo G.
Cargo O.
Scolastico C.
Manzoni L.
Tetrahedron Lett.
1994,
35:
4031
8
Colombo L.
Di Giacomo M.
Scolastico C.
Manzoni L.
Belvisi L.
Molteni V.
Tetrahedron Lett.
1995,
36:
625
9
Colombo L.
Di Giacomo M.
Belvisi L.
Manzoni L.
Scolastico C.
Gazz. Chim. Ital.
1996,
126:
543
10
Manzoni L.
Belvisi L.
Scolastico C.
Synlett
2000,
1287
11
Baldwin EJ.
J. Chem. Soc., Chem. Commun.
1976,
734
Calculations were performed employing a modified version of the MM2 force field model for intramolecular radical addition to alkenes developed by Houk and now incorporated in the program MacroModel. See:
12a
Belvisi L.
Gennari C.
Poli G.
Scolastico C.
Salom B.
Vassallo M.
Tetrahedron
1992,
48:
3945
12b
Houk KN.
Paddon-Row MN.
Spellmeyer DC.
Rondan G.
Nagase S.
J. Org. Chem.
1987,
52:
959
12c
Mohamadi F.
Richards NGJ.
Guida WC.
Liskamp R.
Caufield C.
Chang G.
Hendrickson T.
Still WC.
J. Comput. Chem.
1990,
11:
440
13
Viehe HG.
Merény R.
Stella L.
Janousek Z.
Angew. Chem., Int. Ed. Engl.
1979,
18:
917
14a
Cignarella G.
Nathansohon G.
J. Org. Chem.
1961,
26:
1500
14b
Boutelje J.
Hjalmarsson M.
Hult K.
Lindbäck M.
Norin T.
Bioorg. Chem.
1988,
16:
364
15
Peterson JS.
Felles G.
Rapoport H.
J. Am. Chem. Soc.
1984,
106:
4539
16
Chiesa MV.
Manzoni L.
Scolastico C.
Synlett
1996,
441
17
Greco PA.
Jaw JY.
Claremond DA.
Nicolaou KC.
J. Org. Chem.
1981,
46:
1215
18a
Lombart H.-G.
Lubell WD.
J. Org. Chem.
1996,
61:
9437
18b
Polyak F.
Lubell WD.
J. Org. Chem.
1998,
63:
7463
18c
Polyak F.
Lubell WD.
J. Org. Chem.
2001,
66:
1171
19
Dietrich E.
Lubell WD.
J. Org. Chem.
2003,
68:
6988
20
Angiolini M.
Araneo S.
Belvisi L.
Cesarotti E.
Checchia A.
Crippa L.
Manzoni L.
Scolastico C.
Eur. J. Org. Chem.
2000,
2571 ; the procedures reported in this paper have been also used for the gram scale preparation of the bicyclic lactams
21
Collado I.
Ezquerra J.
Vaquero JJ.
Pedregal C.
Tetrahedron Lett.
1994,
43:
8037
22
Schmidt U.
Lieberkneckt A.
Wild J.
Synthesis
1984,
53
23a
Salimbeni A.
Paleari F.
Canevotti R.
Criuscuoli M.
Lippi A.
Angiolini M.
Belvisi L.
Scolastico C.
Colombo L.
Bioorg. Med. Chem. Lett.
1997,
7:
2205
23b
Colombo L.
Di Giacomo M.
Brusotti G.
Sardone N.
Angiolini M.
Belvisi L.
Maffioli S.
Manzoni L.
Scolastico C.
Tetrahedron
1998,
54:
5325
24 Steward, J. J. P. MOPAC Version 60, F. J. Seiler Research Laboratory U. S. Air Force Academy CO 80840, QCPE 455.
25
Högberg T.
Ström P.
Ebner M.
Rämsby SJ.
J. Org. Chem.
1987,
52:
2033
26
Kajigaeshi S.
Asano K.
Fujisaki S.
Kakinami T.
Okamoto T.
Chem. Lett.
1989,
463
27
Colombo L.
Di Giacomo M.
Vinci V.
Colombo M.
Manzoni L.
Scolastico C.
Tetrahedron
2003,
59:
4501
For reviews on catalytic olefin metathesis see:
28a
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
28b
Phillips AJ.
Abell AD.
Aldrichimica Acta
1999,
32:
75
28c
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
28d
Trnka TM.
Grubbs RH.
Acc. Chem Res.
2001,
34:
18
28e
Hoveyda AH.
Schrock RR.
Chem.-Eur. J.
2001,
7:
945
29
Grossmith CE.
Senia F.
Wagner J.
Synlett
1999,
1660
30a
Beal LM.
Moeller KD.
Tetrahedron Lett.
1998,
39:
4639
30b
Beal LM.
Liu B.
Chu W.
Moeller KD.
Tetrahedron
2000,
56:
10113
30c
Hoffmann T.
Lanig H.
Waibel R.
Gmeiner P.
Angew. Chem. Int. Ed.
2001,
40:
3361
30d
Sung H.
Sunghoon M.
Beak P.
J. Org. Chem.
2001,
66:
9056
31
Brocherieux-Lanoy S.
Dhimane H.
Poupon J.-C.
Vanucci C.
Lhommet G.
J. Chem. Soc., Perkin Trans. 1
1997,
2163
32
Shono T.
Fujita T.
Matsumura Y.
Chem. Lett.
1991,
1:
81
33a
Berkovitz DB.
McFadden JM.
Chisowa E.
Semerad CL.
J. Am. Chem. Soc.
2000,
122:
11031
33b
Berkovitz DB.
McFadden JM.
Sloss MK.
J. Org. Chem.
2000,
65:
2907
33c
Berkovitz DB.
Chisowa E.
McFadden JM.
Tetrahedron
2001,
57:
6329
34 The following activating agents were used in different conditions of temperature and solvent: DCC CIP/HOAt HATU EDC/HOAt DPPA and PyBop.
35
Frérot E.
Coste J.
Pantaloni A.
Dufour M.-N.
Jouin P.
Tetrahedron
1991,
47:
259
36a
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
36b
Chatterjee AK.
Grubbs RH.
Org. Lett.
1999,
1:
1751
37
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
38
Manzoni L.
Colombo M.
May E.
Scolastico C.
Tetrahedron
2001,
57:
249
39
Belvisi L.
Colombo L.
Colombo M.
Di Giacomo M.
Manzoni L.
Vodopivec B.
Scolastico C.
Tetrahedron
2001,
57:
6463
40
Crossley MJ.
Reid RC.
J. Chem. Soc., Chem. Commun.
1994,
2237
41a For a review on pyroglutamic acids see: Nájera C.
Yus M.
Tetrahedron: Asymmetry
1999,
10:
2245 ; and references cited therein
41b
Shono T.
Matsumura Y.
Tsubata K.
Sugihara Y.
Yamane S.-I.
Kanazawa T.
Aoki T.
J. Am. Chem. Soc.
1982,
104:
6697
41c
Shono T.
Matsumura Y.
Tsubata K.
Org. Synth.
1985,
63:
206
42
Ezquerra J.
Pedregal C.
Rubio A.
J. Org. Chem.
1994,
59:
4327 ; and references therein
43a
Pedregal C.
Ezquerra J.
Escribano A.
Carreño MC.
Garcia Ruano JL.
Tetrahedron Lett.
1994,
35:
7277
43b
Ezquerra J.
Pedregal C.
Yruretagoyena B.
Rubio A.
Carreño MC.
Escribano A.
Garcia Ruano J.
J. Org. Chem.
1995,
60:
2925
44a
Russowsky D.
Petersen RZ.
Godoi MN.
Pilli RA.
Tetrahedron Lett.
2000,
41:
9939
44b
Onishi Y.
Ito T.
Ysuda M.
Baba A.
Eur. J. Org. Chem.
2002,
1578
45
Hanessian S.
Margarita R.
Tetrahedron Lett.
1998,
39:
5887
46a
Hayen A.
Kock R.
Saak W.
Haase D.
Metzger JO.
J. Am. Chem. Soc.
2000,
122:
12458
46b
Mathias LJ.
Synthesis
1979,
561
47a
Artale E.
Banfi G.
Belvisi L.
Colombo L.
Colombo M.
Manzoni L.
Scolastico C.
Tetrahedron
2003,
59:
6241
47b
Bracci A.
Manzoni L.
Scolastico C.
Synthesis
2003,
2363
48
McClure KF.
Renold P.
Kemp DS.
J. Org. Chem.
1995,
60:
454
49
Rose GD.
Gierasch LM.
Smith JA.
Adv. Prot. Chem.
1985,
37:
1
50
Chang G.
Guida WC.
Still WC.
J. Am. Chem. Soc.
1989,
11:
4379
51
Still WC.
Tempczyk A.
Hawley RC.
Hendrickson T.
J. Am. Chem. Soc.
1990,
112:
6127
52
Garcia-Moreno EB.
Dwyer JJ.
Gittis AG.
Lattman EE.
Spencer DS.
Sites WE.
Biophys. Chem.
1997,
64:
211
53
Belvisi L.
Bernardi A.
Manzoni L.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
2000,
2563
54 Molecular mechanics calculations were performed within the framework of MacroModel
[12c ]
version 55 using the MacroModel implementation of the Amber all-atom force field
[77 ]
(denoted AMBER*). The torsional space of each molecule was randomly varied with the usage-directed Monte Carlo conformational search of Chang Guida and Still.
[50 ]
Ring-closure bonds were defined in the six- and seven-membered rings of the 6,5- and 7,5-fused bicyclic lactams, respectively. Amide bonds were included among the rotatable bonds. For each search at least 2000 starting structures for each variable torsion angle were generated and minimized until the gradient was less than 0.05 kJ/Åmol using the truncated Newton-Raphson method
[78 ]
implemented in MacroModel. Duplicate conformations and those with an energy greater than 6 kcal/mol above the global minimum were discarded. The nature of the stationary points individuated was tested by computing the eigenvalues of the second-derivative matrix.
55
Ball JB.
Hughes RA.
Alewood PF.
Andrews PR.
Tetrahedron
1993,
49:
3467
56 Values of the Cα
i
-Cα
ι
+
3 distance (dα) of less than 7 Å were used to define the presence of a reverse-turn. The range 0±30° for the virtual torsion angle β (C
i
-Cα
i+1
-Cα
i+2
-N
i+3
) was taken to indicate a tight reverse-turn.
[55 ]
Assignment of a low-energy conformation to a particular turn type was made where possible on the basis of the ideal φ and ψ torsion angles (±30°) reported by Rose et al.
[49 ]
With regard to the intramolecular hydrogen bond parameters it was assumed that a hydrogen bond is formed when the distance between the acceptor and the hydrogen of the donor is smaller than 25 Å, the N-H···O bond angle is greater than 120°, and the H···O=C angle is greater than 90°.
57a
Takeuchi Y.
Marshall GR.
J. Am. Chem. Soc.
1998,
120:
5363 ; and references therein
57b
Gillespie P.
Cicariello J.
Olson GL.
Biopolymers
1997,
43:
191
58 The percentage of β-turn hydrogen bond resulting from Monte Carlo/Stochastic Dynamics (MC/SD)
[79 ]
simulations in GB/SA chloroform or water of dipeptide and tetrapeptide analogues of the indolizidinone ring system is generally lower than the corresponding value calculated by the MC/EM protocol. A better agreement between the two computational approaches is observed for the benzyl-substituted dipeptide mimic 59x and its longer derivatives.
[59 ]
It should be also noted that MC/SD simulations of some bicyclic systems showed convergence problems. NMR and IR spectroscopic studies of sequences of different length will play an important part in assessing the β-turn inducing potential of the bicyclic mimics.
59a
Belvisi L.
Gennari C.
Mielgo A.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
1999,
389
59b
Belvisi L.
Gennari C.
Madder A.
Mielgo A.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
2000,
5:
695
60 Previous data
[59 ]
suggest that δNH < 62 ppm for a completely non-hydrogen-bonded peptide amide or carbamate proton.
61a
Gellman SH.
Dado GP.
Liang GB.
Adams RB.
J. Am. Chem. Soc.
1991,
113:
1164
61b
Gellman SH.
Desper JM.
Liang GB.
J. Am. Chem. Soc.
1993,
115:
925
62 The amide I region of the IR spectrum is predominately due to the C=O stretching vibration; 35y , 37y , 40y , and 42y have three different types of carbonyls: a secondary amide, a tertiary amide, and a carbamate. On the basis of model compounds,
[80 ]
they are known to give rise to three distinct absorbances: at 1680-1675 cm-
1 for the free secondary amide, at 1665 cm-
1 for the free tertiary amide of the 6,5-fused bicyclic lactam, and at 1730 cm-
1 for the free carbamate. Hydrogen bonding to the carbonyl shifts the band to lower frequency by 20-30 cm-
1 .
63
Salimbeni A.
Paleari F.
Canevotti R.
Criscuoli M.
Lippi A.
Angiolini M.
Belvisi L.
Scolastico C.
Colombo L.
Bioorg. Med. Chem. Lett.
1997,
7:
2205
64
Bode W.
Mayr I.
Baumann U.
Huber R.
Stone SR.
Hofsteenge J.
EMBO J.
1989,
8:
3467
65a
Balasubramanian BN.
Advances in the Design and Development of Thrombin Inhibitors, Bioorg. Med. Chem.
1995,
3:
999
65b
Tamura SY.
Goldman EA.
Brunck T.
Ripka WC.
Semple JE.
Bioorg. Med. Chem. Lett.
1997,
7:
331
65c
Balasubramanian N.
St. Laurent DR.
Federici ME.
Meanwell NA.
Wright JJ.
Schumacher WA.
Seiler SM.
J. Med. Chem.
1993,
36:
300
65d
Levy OE.
Semple JE.
Lim ML.
Reiner J.
Rote WE.
Dempsey E.
Richard BM.
Zhang E.
Tulinsky A.
Ripka WC.
Nutt RF.
J. Med. Chem.
1996,
39:
4527
65e
Jackson CV.
Wilson HC.
Growe VG.
Schuman RT.
Gesellchen PD.
J. Cardiovasc. Pharmacol.
1993,
21:
587
66
Rick W.
Methods of Enzymatic Analysis
Bergmeyer HU.
Academic Press;
New York:
1963.
67
Cirillo R.
Lippi A.
Subissi A.
Agnelli G.
Criscuoli M.
Thromb. Haemostasis
1996,
76:
384
68a
Hanessian S.
Sailes H.
Munro A.
Therrien E.
J. Org. Chem.
2003,
68:
7219
68b
Siddiqui MA.
Préville P.
Tarazi M.
Warder SC.
Eby P.
Gorseth E.
Puumala K.
DiMaio J.
Tetrahedron Lett.
1997,
38:
8807
69
Ruoslahti E.
Pierschbacher MD.
Science
1987,
238:
491
70
Eliceiri BP.
Cheresh DAJ.
Clin. Invest.
1999,
103:
1227
71
Ruoslahti E.
Ann. Rev. Cell Dev. Biol.
1996,
12:
697
72a
Haubner R.
Gratias R.
Diefenbach B.
Goodman SL.
Jonczyk A.
Kessler H.
J. Am. Chem. Soc.
1996,
118:
7461
72b
Haubner R.
Finsinger D.
Kessler H.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1374
73a
Dechantsreiter MA.
Planker E.
Mathä B.
Lohof E.
Hölzemann G.
Jonczyk A.
Goodman SL.
Kessler H.
J. Med. Chem.
1999,
42:
3033
73b
Lohof E.
Planker E.
Mang C.
Burkhart F.
Dechantsreiter MA.
Haubner R.
Wester H.-J.
Schwaiger M.
Hölzemann G.
Goodman SL.
Kessler H.
Angew. Chem. Int. Ed.
2000,
39:
2761
73c
Schumann F.
Müller A.
Koksch M.
Müller G.
Sewald N.
J. Am. Chem. Soc.
2000,
122:
12009
73d
Haubner R.
Schmitt W.
Hölzemann G.
Goodman SL.
Jonczyk A.
Kessler H.
J. Am. Chem. Soc.
1996,
118:
7881
74a
Belvisi L.
Bernardi A.
Checchia A.
Manzoni L.
Potenza D.
Scolastico C.
Castorina M.
Cupelli A.
Giannini G.
Carminati P.
Pisano C.
Org. Lett.
2001,
3:
1001
74b
Belvisi L.
Caporale A.
Colombo M.
Manzoni L.
Potenza D.
Scolastico C.
Castorina M.
Cati M.
Giannini G.
Pisano C.
Helv. Chim. Acta
2002,
85:
4353
75
Kumar CC.
Nie H.
Rogers CP.
Malkowski M.
Maxwell E.
Catino JJ.
Armstrong LJ.
Pharmacol. Exp. Ther.
1997,
283:
843
76
Xiong J.-P.
Stehle T.
Zhang R.
Joachimiak A.
Frech M.
Goodman SL.
Arnout MA.
Science
2002,
296:
151
77
Weiner SJ.
Kollman PA.
Nguyen DT.
Case DA.
J. Comput. Chem.
1986,
7:
230
78
Ponder JW.
Richards FM.
J. Comput. Chem.
1987,
8:
1016
79
Guarnieri F.
Still WC.
J. Comput. Chem.
1994,
15:
1302
80
Gennari C.
Gude M.
Potenza D.
Piarulli U.
Chem.-Eur. J.
1998,
4:
1924