Myasthenia gravis (MG) is arguably the best understood autoimmune disease, and its study has also led to fundamental appreciation of mechanisms of neuromuscular transmission. MG is caused by antibodies against the acetylcholine receptor (AChR), which produce a compromise in the end-plate potential, reducing the safety factor for effective synaptic transmission. It is clear that AChR antibody destruction of the postsynaptic surface is dependent on complement activation. A muscle-specific kinase has been recently found to be an antigenic target in MG patients without antibodies against the AChR. Autoantibody production in MG is a T-cell-dependent process, but how a breakdown in tolerance occurs is not known. In MG there is an interesting differential involvement of muscle groups, in particular, the extraocular muscles. This article reviews normal neuromuscular transmission, mechanisms of the autoimmune process of MG, and differential susceptibility of eye muscles to MG.
KEYWORDS
Myasthenia gravis - neuromuscular transmission - acetylcholine receptor - neuromuscular junction
REFERENCES
1 Engel A G. Anatomy and molecular architecture of the neuromuscular junction. In: Engel AG Myasthenia Gravis and Myasthenic Disorders. Oxford; Oxford University Press 1999: 3-39
2
Sanes J R, Lichtman J W.
Induction, assembly, maturation and maintenance of a postsynaptic apparatus.
Nat Rev Neurosci.
2001;
2
791-805
3
Boonyapisit K, Kaminski H J, Ruff R L.
The molecular basis of neuromuscular transmission disorders.
Am J Med.
1999;
106
97-113
4
Ruff R L.
Neurophysiology of the neuromuscular junction: overview.
Ann N Y Acad Sci.
2003;
998
1-10
5 Kaminski H J. Myasthenia Gravis and Related Disorders. Totowa, NJ; Humana Press 2003: 1-396
6
Stanley E F.
Presynaptic calcium channels and the transmitter release mechanism.
Ann N Y Acad Sci.
1993;
681
368-372
7
Poage R E, Meriney S D.
Presynaptic calcium influx, neurotransmitter release, and neuromuscular disease.
Physiol Behav.
2002;
77
507-512
8
Fon E A, Edwards R H.
Molecular mechanisms of neurotransmitter release.
Muscle Nerve.
2001;
24
581-601
9
Schiavo G, Matteoli M, Montecucco C.
Neurotoxins affecting neuroexocytosis.
Physiol Rev.
2000;
80
717-766
10
Abbas L.
Synapse formation: let's stick together.
Curr Biol.
2003;
13
R25-R27
11
Arber S, Burden S J, Harris A J.
Patterning of skeletal muscle.
Curr Opin Neurobiol.
2002;
12
100-103
12
McMahan U J, Sanes J R, Marshall L M.
Cholinesterase is associated with the basal lamina at the neuromuscular junction.
Nature.
1978;
271
172-174
13
Smit A B, Syed N I, Schaap D et al..
A glia-derived acetylcholine-binding protein that modulates synaptic transmission.
Nature.
2001;
411
261-268
14
Brejc K, van Dijk W J, Klaassen R V et al..
Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.
Nature.
2001;
411
269-276
15
Wood S J, Slater C R.
Safety factor at the neuromuscular junction.
Prog Neurobiol.
2001;
64
393-429
16 Vincent A. The neuromuscular junction and neuromuscular transmission. In: Karpati G, Hilton-Jones D, Griggs RC Disorders of Voluntary Muscle. Cambridge; Cambridge University Press 2001: 142-167
17
Sieb J P, Dorfler P, Tzartos S et al..
Congenital myasthenic syndromes in two kinships with end-plate acetylcholine receptor and utrophin deficiency.
Neurology.
1998;
50
54-61
18
Gautam M, Noakes P G, Mudd J et al..
Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice.
Nature.
1995;
377
232-236
19
Burke G, Cossins J, Maxwell S et al..
Rapsyn mutations in hereditary myasthenia: distinct early- and late-onset phenotypes.
Neurology.
2003;
61
826-828
20
Merlie J P, Sanes J R.
Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibers.
Nature.
1985;
317
66-68
21
Brenman J E, Chao D S, Gee S H et al..
Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains.
Cell.
1996;
84
757-767
22
Kusner L L, Kaminski H J.
Nitric oxide synthase is concentrated at the skeletal muscle endplate.
Brain Res.
1996;
730
238-242
23
Wang T, Xie Z, Lu B.
Nitric oxide mediates activity dependent synaptic suppression at developing neuromuscular synapses.
Nature.
1995;
374
262-266
24
Kaminski H J, Ruff R L.
Insights into possible skeletal muscle nicotinic acetylcholine receptor (AChR) changes in some congenital myasthenias from physiological studies, point mutations, subunit substitutions of the AChR.
Ann N Y Acad Sci.
1993;
681
435-450
25
Lindstrom J.
Acetylcholine receptors and myasthenia.
Muscle Nerve.
2000;
23
453-477
26 Lindstrom J. Acetylcholine receptor structure. In: Kaminski HJ Myasthenia Gravis and Related Disorders. Totowa, NJ; Humana Press 2003: 15-52
27
Unwin N.
Projection structure of the nicotinic acetylcholine receptor: distinct conformations of the α subunits.
J Mol Biol.
1996;
257
586-596
28
Unwin N, Toyoshima C, Kubalek E.
Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized torpedo postsynaptic membranes.
J Cell Biol.
1988;
107
1123-1138
29
Brehm P, Henderson L.
Regulation of acetylcholine receptor channel function during development of skeletal muscle.
Dev Biol.
1988;
129
1-11
30
Kaminski H J, Kusner L L, Block C H.
Expression of acetylcholine receptor isoforms at extraocular muscle endplates.
Invest Ophthalmol Vis Sci.
1996;
37
345-351
31
MacLennan C, Beeson D, Buijs A-M, Vincent A, Newsom-Davis J.
Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis.
Ann Neurol.
1997;
41
423-431
32
Engel A G, Ohno K, Bouzat C, Sine S M, Griggs R C.
End-plate acetylcholine receptor deficiency due to nonsense mutations in the epsilon subunit.
Ann Neurol.
1996;
40
810-817
33
Ruegg M A, Bixby J L.
Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction.
Trends Neurosci.
1998;
21
22-27
34
Wallace B G.
Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus.
J Neurosci.
1989;
9
1294-1302
35
Wallace B G, Qu Z, Huganir R L.
Agrin induces phosphorylation of the nicotinic acetylcholine receptor.
Neuron.
1991;
6
869-878
36
Wallace B G.
The mechanism of agrin-induced acetylcholine receptor aggregation.
Philos Trans R Soc Lond B Biol Sci.
1991;
331
273-280
37
Gautam M, Noakes P G, Moscoso L et al..
Defective neuromuscular synaptogenesis in agrin-deficient mutant mice.
Cell.
1996;
85
525-535
38
Glass D J, Bowen D C, Stitt T N et al..
Agrin acts via a MuSK receptor complex.
Cell.
1996;
85
513-523
39
Wallace B.
scFvs get down to basics: how MuSK makes synapses.
Nat Biotechnol.
1997;
15
721-722
40
Wickelgren I.
Synapse-making molecules revealed.
Science.
1996;
272
1100
41
Lindstrom J M, Seybold M D, Lennon V A, Whittingham S, Duane D D.
Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value.
Neurology.
1976;
26
1054-1059
42
Engel A G, Lambert E H, Howard F M.
Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis. Ultrastructure and light microscopic localization and electrophysiological correlations.
Mayo Clin Proc.
1977;
52
267-280
43
Toyka K V, Drachman D B, Griffin D E, Pestronk D.
Myasthenia gravis study of humoral immune mechanisms by transfer to mice.
N Engl J Med.
1977;
296
125-131
44
Pinching A J, Peters D K, Newsom-Davis J.
Remission of myasthenia gravis following plasma exchange.
Lancet.
1976;
2
1373-1376
45
Patrick J, Lindstrom J.
Autoimmune response to acetylcholine receptor.
Science.
1973;
180
871-872
46
Conti-Fine B M, Kaminski H J.
Autoimmune neuromuscular transmission disorders: myasthenia gravis and Lambert-Eaton myasthenic syndrome.
Continuum.
2001;
7
56-93
47 Conti-Fine B, Bellone M, Howard J J, Protti M. Myasthenia Gravis: The Immunobiology of an Autoimmune Disease. Georgetown, TX; Neuroscience Intelligence, Unit: R.G. Landes 1997
48
Drachman D, Angus C W, Adams R N, Kao I.
Effect of myasthenic patients' immunoglobulin on acetylcholine receptor turnover: selectivity of degradation process.
Proc Natl Acad Sci USA.
1978;
75
3422-3426
49
Sahashi K, Engel A G, Lambert E H, Howard Jr F M.
Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis.
J Neuropathol Exp Neurol.
1980;
39
160-172
50
Nakano S, Engel A G.
Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients.
Neurology.
1993;
43
1167-1172
51
Lennon V A, Seybold M E, Lindstrom J M, Cochrane C, Ulevitch R.
Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis.
J Exp Med.
1978;
147
973-983
52
Corey A L, Richman D P, Agius M A, Wollmann R L.
Refractoriness to a second episode of experimental myasthenia gravis. Correlation with AChR concentration and morphologic appearance of the postsynaptic membrane.
J Immunol.
1987;
138
3269-3275
53
Corey A L, Richman D P, Shuman C A, Gomez C M, Arnason B G.
Use of monoclonal antiacetylcholine receptor antibodies to investigate the macrophage inflammation of acute experimental myasthenia gravis: refractoriness to a second episode of acute disease.
Neurology.
1985;
35
1455-1460
54
Biesecker G, Gomez C M.
Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with fab antibody to complement C5.
J Immunol.
1989;
142
2654-2659
55
Tuzun E, Scott B G, Goluszko E, Higgs S, Christadoss P.
Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.
J Immunol.
2003;
171
3847-3854
56
Miwa T, Song W C.
Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases.
Int Immunopharmacol.
2001;
1
445-459
57
Walport M J.
Complement.
N Engl J Med.
2001;
344
1058-1066
58
Lin F, Kaminski H, Conti-Fine B, Wang W, Richmonds C, Medof M.
Enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection.
J Clin Invest.
2002;
110
1269-1274
59
Tzartos S, Seybold M, Lindstrom J.
Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies.
Proc Natl Acad Sci USA.
1982;
79
188-192
60
Manfredi A A, Protti M P, Bellone M, Moiola L, Conti-Tronconi B M.
Molecular anatomy of an autoantigen: T and B epitopes on the nicotinic acetylcholine receptor in myasthenia gravis.
J Lab Clin Med.
1992;
120
13-21
61
Gomez C M, Richman D P.
Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis.
J Immunol.
1985;
135
234-241
62
Strauss A JL, Seegal J C, Hsu J C, Burkholder P M, Nastuk W, Ossermann K E.
Immunofluoresence demonstration of a muscle binding, complement fixing serum globulin fraction in myasthenia gravis.
Proc Soc Exp Biol Med.
1960;
105
177-184
63
Aarli J A, Stefanson K, Marton L SG, Wollman R L.
Patients with myasthenia gravis and thymoma have in their sera IgG antibodies against titin.
Clin Exp Immunol.
1990;
82
284-288
64
Skeie G O, Mygland Å, Aarli J A, Gilhus N E.
Titin antibodies in patients with late onset myasthenia gravis: clinical correlations.
Autoimmunity.
1995;
20
99-104
65
Skeie G O, Lunde P K, Sejersted O M, Mygland A, Aarli J A, Gilhus N E.
Myasthenia gravis sera containing antiryanodine receptor antibodies inhibit binding of [3H]-ryanodine to sarcoplasmic reticulum.
Muscle Nerve.
1998;
21
329-335
66
Mygland Å, Vincent A, Newsom-Davis J et al..
Autoantibodies in thymoma-associated myasthenia gravis with myositis or neuromyotonia.
Arch Neurol.
2000;
57
527-531
67
Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A.
Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies.
Nat Med.
2001;
7
365-368
68
Evoli A, Tonali P A, Padua L et al..
Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis.
Brain.
2003;
126
2304-2311
69
Vincent A, Bowen J, Newsom-Davis J, McConville J.
Seronegative generalised myasthenia gravis: clinical features, antibodies, and their targets.
Lancet Neurol.
2003;
2
99-106
70
Yang B, McIntosh K R, Drachman D B.
How subtle differences in MHC class II affect the severity of experimental myasthenia gravis.
Clin Immunol Immunopathol.
1998;
86
45-58
71
Vincent A, Newsom-Davis J.
Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles.
Clin Exp Immunol.
1982;
49
257-265
72
Limburg P C, The T C, Hummel-Teppel E, Oosterhuis H.
Anti-acetylcholine receptor antibodies in myasthenia gravis. I. Relation to clinical parameters in 250 patients.
J Neurol Sci.
1983;
58
357-370
73
Compston D AS, Vincent A, Newsom-Davis J, Batchelor J R.
Clinical, pathological, HLA antigen, and immunological evidence for disease heterogeneity in myasthenia gravis.
Brain.
1980;
103
579-601
74
Vincent A, Palace J, Hilton-Jones D.
Myasthenia gravis.
Lancet.
2001;
357
2122-2128
75
Yi Q, Lefvert A K.
Idiotype- and anti-idiotype-reactive T lymphocytes in myasthenia gravis. Evidence for the involvement of different subpopulations of T helper lymphocytes.
J Immunol.
1994;
153
3353-3359
76
Link J, Navikas V, Yu M, Fredrikson S, Osterman P O, Link H.
Augmented interferon-gamma, interleukin-4 and transforming growth factor-beta mRNA expression in blood mononuclear cells in myasthenia gravis.
J Neuroimmunol.
1994;
51
185-192
77
Hohlfeld R, Wekerle H.
The thymus in myasthenia gravis.
Neurol Clin.
1994;
12
331-342
78
Sommer N, Willcox N, Harcourt G C, Newsom-Davis J.
Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells.
Ann Neurol.
1990;
28
312-319
79
Schonbeck S, Padberg F, Hohlfeld R, Wekerle H.
Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice.
J Clin Invest.
1992;
90
245-250
80
Zheng Y, Wheatley L M, Liu T, Levinson A I.
Acetylcholine receptor alpha subunit mRNA expression in human thymus: augmented expression in myasthenia gravis and upregulation by interferon-gamma.
Clin Immunol.
1999;
91
170-177
81
Kaminski H J, Fenstermaker R A, Abdul-Karim F W, Clayman J, Ruff R L.
Acetylcholine receptor subunit gene expression in thymic tissue.
Muscle Nerve.
1993;
16
1332-1337
82
Navaneetham D, Penn A S, Howard J FJ, Conti-Fine B M.
Human thymuses express incomplete sets of muscle acetylcholine receptor subunit transcripts that seldom include the delta subunit.
Muscle Nerve.
2001;
24
203-210
83
Gronseth G S, Barohn R J.
Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.
Neurology.
2000;
55
7-15
84
Grob D, Arsura E L, Brunner N G, Namba T.
The course of myasthenia gravis and therapies affecting outcome.
Ann N Y Acad Sci.
1987;
505
472-499
85
Kaminski H J, Li Z, Richmonds C, Ruff R L, Kusner L.
Susceptibility of ocular tissues to autoimmune diseases.
Ann N Y Acad Sci.
2003;
998
362-374
86
Ubogu E E, Kaminski H J.
Preferential involvement of extraocular muscle by myasthenia gravis.
Neuroophthalmology.
2001;
25
219-228
87 Leigh R J, Zee D S. The Neurology of Eye Movements. Contemporary Neurology Series. Philadelphia; F.A. Davis 1999: 561
88
Porter J D.
Extraocular muscle: cellular adaptations for a diverse functional repertoire.
Ann N Y Acad Sci.
2002;
956
7-16
89
Ruff R L.
Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers.
Am J Physiol.
1992;
262
C229-C234
90
Ruff R L, Lennon V.
End-plate voltage-gated sodium channels are lost in clinical and experimental myasthenia gravis.
Ann Neurol.
1998;
43
370-379
91
Khanna S, Richmonds C, Kaminski H, Porter J.
Molecular organization of the extraocular muscle neuromuscular junction: partial conservation of and divergence from skeletal muscle prototype.
Invest Ophthalmol Vis Sci.
2003;
44
1918-1926
92
Wang Z, Diethelm-Okita B, Okita D, Kaminski H, Howard J, Conti-Fine B.
T-cell recognition of muscle acetylcholine receptor in ocular myasthenia gravis.
J Neuroimmunol.
2000;
108
29-39
93
Porter J D, Khanna S, Kaminski H J et al..
Extraocular muscle is defined by a fundamentally distinct gene expression profile.
Proc Natl Acad Sci USA.
2001;
98
12062-12067
Henry J KaminskiM.D.
Department of Neurology, University Hospitals of Cleveland
11100 Euclid Avenue, Cleveland, OH 44106