Synlett 2004(10): 1772-1775  
DOI: 10.1055/s-2004-830869
LETTER
© Georg Thieme Verlag Stuttgart · New York

An Efficient and Enantioselective Approach to 2,5-Disubstituted ­Dihydropyrones

Zhengyan Fua, Bo Gaoa, Zhipeng Yua, Lan Yua, Yaozhong Huanga, Xiaoming Feng*a,b, Guolin Zhangc
a Key Laboratory of Green Chemistry & Technology (Sichuan University), Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
Fax: +86(28)85418249; e-Mail: xmfeng@scu.edu.cn;
b State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, P. R. of China
c Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
Further Information

Publication History

Received 19 April 2004
Publication Date:
28 July 2004 (online)

Abstract

A highly efficient method for the formation of optically active 2,5-disubstituted dihydropyrones using catalytic enantioselective hetero-Diels-Alder reaction of (E)-3-methyl-4-methoxy-2-[(trimethylsilyl)oxy]-1,3-butadiene with aldehydes is presented. In the presence of 5 mol% chiral titanium(IV) complex, this catalytic reaction proceeded smoothly to afford corresponding dihydropyrones in moderate to excellent yields with high enantioselectivities (up to 99% ee).

    References

  • For some examples of asymmetric synthesis of carbohydrates, see:
  • 1a Bednarski M. Danishefsky S. J. Am. Chem. Soc.  1983,  105:  6968 
  • 1b Danishefsky S. Bednarski M. Tetrahedron Lett.  1985,  26:  3411 
  • 1c Danishefsky SJ. Pearson WH. Segmuller BE. J. Am. Chem. Soc.  1985,  107:  1280 
  • 1d Bednarski M. Danishefsky S. J. Am. Chem. Soc.  1986,  108:  7060 
  • 1e Danishefsky SJ. DeNinno MP. Angew. Chem., Int. Ed. Engl.  1987,  26:  15 
  • 1f Tietze LF. Schneider C. Montenbruck A. Angew. Chem., Int. Ed. Engl.  1994,  33:  980 
  • 1g Hu Y.-J. Huang X.-D. Yao Z.-J. Wu Y.-L. J. Org. Chem.  1998,  63:  2456 
  • 1h

    See ref. [5e]

  • 1i Audrain H. Thorhauge J. Hazell RG. Jørgensen KA. J. Org. Chem.  2000,  65:  4487 
  • 2 For recent review on hetero-Diels-Alder reaction, see: Jørgensen KA. Angew. Chem. Int. Ed.  2000,  39:  3558 
  • For asymmetric catalytic hetero-Diels-Alder reactions of Danishefsky’s diene and its analogues with aldehydes, see for example:
  • 3a Bednarski M. Danishefsky S. J. Am. Chem. Soc.  1983,  105:  3716 
  • 3b Bednarski M. Maring C. Danishefsky S. Tetrahedron Lett.  1983,  24:  3451 
  • 3c Maruoka K. Itoh T. Shirasaka T. Yamamoto H. J. Am. Chem. Soc.  1988,  110:  310 
  • 3d Togni A. Organometallics  1990,  9:  3106 
  • 3e Corey EJ. Cywin CL. Roper TD. Tetrahedron Lett.  1992,  33:  6907 
  • 3f Gao Q. Maruyama T. Mouri M. Yamamoto H. J. Org. Chem.  1992,  57:  1951 
  • 3g Motoyama Y. Mikami K. J. Chem. Soc., Chem. Commun.  1994,  1563 
  • 3h Keck GE. Li X.-Y. Krishnamurthy D. J. Org. Chem.  1995,  60:  5998 
  • 3i Ghosh AK. Mathivanan P. Cappiello J. Krishnan K. Tetrahedron: Asymmetry  1996,  7:  2165 
  • 3j Matsukawa S. Mikami K. Tetrahedron: Asymmetry  1997,  8:  815 
  • 3k Li L.-S. Wu Y. Hu Y.-J. Xia L.-J. Wu Y.-L. Tetrahedron: Asymmetry  1998,  9:  2271 
  • 3l Schaus SE. Brånalt J. Jacobsen EN. J. Org. Chem.  1998,  63:  403 
  • 3m Dossetter AG. Jamison TF. Jacobsen EN. Angew. Chem. Int. Ed.  1999,  38:  2398 
  • 3n Mihara J. Hamada T. Takeda T. Irie R. Katsuki T. Synlett  1999,  1160 
  • 3o Gong L.-Z. Pu L. Tetrahedron Lett.  2000,  41:  2327 
  • 3p Lévêque L. Blanc ML. Pastor R. Tetrahedron Lett.  2000,  41:  5043 
  • 3q Simonsen KB. Svenstrup N. Roberson M. Jørgensen KA. Chem.-Eur. J.  2000,  6:  123 
  • 3r Doyle MP. Phillips IM. Hu W. J. Am. Chem. Soc.  2001,  123:  5366 
  • 3s Long J. Hu J. Shen X. Ji B. Ding K. J. Am. Chem. Soc.  2002,  124:  10 
  • 3t Yamashita Y. Saito S. Ishitani H. Kobayashi S. Org. Lett.  2002,  4:  1221 
  • 3u Yuan Y. Long J. Sun J. Ding K. Chem.-Eur. J.  2002,  8:  5033 
  • 3v Kii S. Hashimoto T. Maruoka K. Synlett  2002,  931 
  • 3w Du H. Long J. Hu J. Li X. Ding K. Org. Lett.  2002,  4:  4349 
  • 3x Ji B. Yuan Y. Ding K. Meng J. Chem.-Eur. J.  2003,  9:  5989 
  • 3y Du H. Ding K. Org. Lett.  2003,  5:  1091 
  • For asymmetric catalytic hetero-Diels-Alder reactions of Danishefsky’s diene and its analogues with ketones, see:
  • 4a Johannsen M. Yao S. Jørgensen KA. Chem. Commun.  1997,  2169 
  • 4b Yao S. Johannsen M. Audrain H. Hazell RG. Jørgensen KA. J. Am. Chem. Soc.  1998,  120:  8599 
  • For asymmetric catalytic inverse electron demand hetero-Diels-Alder reactions, see:
  • 5a Evans DA. Johnson JS. J. Am. Chem. Soc.  1998,  120:  4895 
  • 5b Thorhauge J. Johannsen M. Jørgensen KA. Angew. Chem. Int. Ed.  1998,  37:  2404 
  • 5c Evans DA. Olhava EJ. Johnson JS. Janey JM. Angew. Chem. Int. Ed.  1998,  37:  3372 
  • 5d Evans DA. Johnson JS. Olhava EJ. J. Am. Chem. Soc.  2000,  122:  1635 
  • 5e Zhuang W. Thorhauge J. Jørgensen KA. Chem. Commun.  2000,  459 
  • 5f Gademann K. Chavez DE. Jacobsen EN. Angew. Chem. Int. Ed.  2002,  41:  3059 
  • 5g Juhl K. Jørgensen KA. Angew. Chem. Int. Ed.  2003,  42:  1498 
  • For asymmetric catalytic hetero-Diels-Alder reactions of other types of diene with aldehydes or ketones, see:
  • 6a Johannsen M. Jørgensen KA. J. Org. Chem.  1995,  60:  5757 
  • 6b Graven A. Johannsen M. Jørgensen KA. Chem. Commun.  1996,  2373 
  • 6c Yao S. Johannsen M. Jørgensen KA. J. Chem. Soc., Perkin Trans. 1  1997,  2345 
  • 6d Johannsen M. Jørgensen KA. J. Chem. Soc., Perkin Trans. 2  1997,  1183 
  • 6e Johannsen M. Jørgensen KA. Zheng X.-F. Hu Q.-S. Pu L. J. Org. Chem.  1999,  64:  299 
  • 6f Oi S. Terada E. Ohuchi K. Kato T. Tachibana Y. Inoue Y. J. Org. Chem.  1999,  64:  8660 
  • For recent progresses on asymmetric catalytic hetero-Diels-Alder reactions in our laboratory, see:
  • 7a Wang B. Feng X. Cui X. Liu H. Jiang Y. Chem. Commun.  2000,  1605 
  • 7b Wang B. Feng X. Huang Y. Liu H. Cui X. Jiang Y. J. Org. Chem.  2002,  67:  2175 
  • 7c Huang Y. Feng X. Wang B. Zhang G. Jiang Y. Synlett  2002,  2122 
  • 8 Miyashita M. Yamasaki T. Shiratani T. Hatakeyama S. Miyazawa M. Irie H. Chem. Commun.  1997,  1787 
9

The following are the NMR data of diene 3: 1H NMR (300 MHz, CDCl3): δ = 6.52 (s, 1 H), 4.24 (s, 1 H), 4.13 (s, 1 H), 3.68 (s, 3 H), 1.70 (s, 3 H), 0.25 (s, 9 H).

10

A Typical Experimental Procedure is Given for the Synthesis of 2,3-Dihydro-5-methyl-2-phenylpyran-4-one: A mixture of (R)-BINOL (7.2 mg, 0.025 mmol), Ti(Oi-Pr)4 (1 M in toluene, 12.5 µL, 0.0125 mmol) and finely powdered 4 Å MS (120 mg) in THF (0.5 mL) was heated at 35 °C for 1 h. After the brown mixture was cooled to -18 °C, benzaldehyde (26 µL, 0.25 mmol), diene (84 µL) and THF (0.5 mL) were added successively. The reaction was allowed to stir at 0 °C for 48 h, after this time it was removed from the bath, and treated with TFA (100 µL). After stirring 12 h at r.t., the reaction was quenched with sat. NaHCO3 (5 mL), filtered through a plug of Celite, extracted with Et2O (10 × 5 mL). The organic layer was dried over Na2SO4 and concentrated. The crude residue was purified by flash chromatography (9:1 PEa: Et2O) to yield 2,3-dihydro-5-methyl-2-phenylpyran-4-one (40.6 mg, 86% yield) as white crystals. The isolated material was determined to be in 99% ee by HPLC analysis (Daicel Chiralcel OJ, 254 nm UV detector, 90:10 hexane:2-propanol, t R(minor) = 15.40 min, t R(major) = 21.15 min). 1H NMR (600 MHz, CDCl3): δ = 7.40-7.46 (m, 5 H), 7.39 (s, 1 H), 5.39-5.42 (m, 1 H), 2.88-2.94 (m, 1 H), 2.69-2.73 (m, 1 H), 1.76 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 192.59, 159.49, 138.27, 128.80, 128.78, 126.05, 114.14, 80.99, 43.21, 10.51. The chromatograms are illustrated in Figure [1] .