Subscribe to RSS
DOI: 10.1055/s-2004-830880
Rhodium-Catalysed 1,4-Additions in Water: Synthesis of Succinic Esters and β2-Amino Acid Derivatives
Publication History
Publication Date:
06 August 2004 (online)

Abstract
The rhodium-catalysed addition of boronic acids to α-substituted activated alkenes proceeds smoothly in water resulting in a unique synthesis of both succinic esters and β2-amino acid derivatives.
Key words
conjugate addition - rhodium - boronic acids - succinic esters - β2-amino acids
- For detailed reviews, see:
-
1a
Fagnou K.Lautens M. Chem. Rev. 2003, 103: 169 -
1b
Hayashi T.Yamasaki K. Chem. Rev. 2003, 103: 2829 -
2a
Itooka R.Iguchi Y.Miyaura N. Chem. Lett. 2001, 722 -
2b
Lautens M.Roy A.Fukouka K.Fagnou K.Martin-Matute B. J. Am. Chem. Soc. 2001, 123: 5538 -
3a
Chapman CJ.Frost CG. Adv. Synth. Catal. 2003, 345: 353 -
3b For related work with organotin and bismuth reagents see:
Huang T.-S.Li C.-J. Org. Lett. 2001, 3: 2037 -
3c For recent work with potassium trifluoro(organo)borates see:
Navarre L.Darse S.Genet J.-P. Eur. J. Org. Chem. 2004, 69 -
4a
Fournie-Zaluski MC.Coulaud A.Bouboutou R.Chaillet P.Devin J.Waksman G.Costentin J.Roques BP. J. Med. Chem. 1985, 28: 1158 -
4b
Moore WM.Spilburg CA. Biochemistry 1986, 25: 5189 -
4c
Buhlmayer P.Caselli A.Fuhrer W.Goschke R.Rasetti V.Rueger H.Stanton JL.Criscione L.Wood JM. J. Med. Chem. 1988, 31: 1839 -
4d
Iizuka K.Mamijo T.Kubota T.Akahane K.Umeyama H.Koso Y. J. Med. Chem. 1988, 31: 704 -
4e
Harada H.Yamaguchi T.Iyobe A.Tsubaki A.Kamijo T.Iizuka K.Ogura K.Kiso Y. J. Org. Chem. 1990, 55: 1679 -
4f
Morimoto T.Chiba M.Achiwa K. Tetrahedron Lett. 1990, 31: 261 -
4g
Heitsch H.Henning R.Kleemann H.-W.Linz W.Nickel W.-U.Ruppert D.Urbach H.Wagner A. J. Med. Chem. 1993, 36: 2788 -
4h
Juaristi E.Lopez-Ruiz H. Curr. Med. Chem. 1999, 6: 983 - 5
Burk MJ.Bienewald F.Harris M.Zanotti-Gerosa A. Angew. Chem. Int. Ed. 1998, 37: 1931 - For selected recent examples of β2-amino acid synthesis see:
-
7a
Duursma A.Minaard AJ.Feringa BL. J. Am. Chem. Soc. 2003, 125: 3700 -
7b
Lee H.-S.Park J.-S.Kim BM.Gellman SH. J. Org. Chem. 2003, 68: 1575 -
7c
Seebach D.Schaeffer L.Gessier F.Bindschädler P.Jäger C.Josien D.Kopp S.Lelais G.Mahajan YR.Micuch P.Sebesta R.Schweizer BW. Helv. Chim. Acta 2003, 86: 1852 -
7d
Sibi MP.Patil K. Angew. Chem. Int. Ed. 2004, 43: 1235 - 8
Basavaiah D.Krishnamacharyulu M.Rao J. Synth. Commun. 2000, 30: 2061 - 10
Calmes M.Daunis J.Mai N. Tetrahedron: Asymmetry 1997, 1641 - 11
Hayashi T.Takahashi M.Takaya Y.Ogasawara M. J. Am. Chem. Soc. 2002, 124: 5052 - For examples of enantioselective additions to α,β-dehydroamino acid derivatives, see:
-
12a
Reetz MT.Moulin D.Gosburg A. Org. Lett. 2001, 3: 4083 -
12b
Chapman CJ.Wadsworth KJ.Frost CG. J. Organomet. Chem. 2003, 680: 206 -
12c
Navarre L.Darses S.Genet J.-P. Angew. Chem. Int. Ed. 2004, 43: 719 - 13
Dixon JA.Neiswender DD. J. Org. Chem. 1960, 25: 499
References
All compounds have been satisfactorily characterised by 1H NMR and 13C NMR. 1H NMR data (300 MHz, CDCl3) for 3a: δ = 2.34 (1 H, dd, J = 4.8, 16.8 Hz), 2.66 (2 H, m), 3.03 (2 H, m), 3.57 (3 H, s), 3.60 (3 H, s), 7.16 (5 H, m). Compound 3c: 1H NMR (300 MHz, CDCl3): δ = 2.39 (1 H, dd, J = 5.7, 17.1 Hz), 2.65 (1 H, dd, J = 8.7, 17.1 Hz), 2.88 (1 H, dd, J = 10.5, 16.8 Hz), 3.09 (2 H, m), 3.57 (3 H, s), 3.60 (3 H, s), 7.42 (2 H, m), 8.01 (2 H, m). Compound 3d: 1H NMR (300 MHz, CDCl3): δ = 2.33 (1 H, dd, J = 5.1, 16.8 Hz), 2.61 (2 H, m), 2.98 (2 H, m), 3.57 (3 H, s), 3.60 (3 H, s), 3.72 (3 H, s), 6.76 (2 H, d, J = 8.7 Hz), 7.00 (1 H, d, J = 8.7 Hz). Compound 3e: 1H NMR (300 MHz, CDCl3): δ = 2.34 (1 H, dd, J = 4.5, 16.5 Hz), 2.62 (2 H, m), 3.02 (2 H, m), 3.57 (3 H, s), 3.62 (3 H, s), 3.72 (3 H, s), 6.67 (3 H, m), 7.15 (1 H, dd, J = 9.6, 17.4 Hz). Compound 3f: 1H NMR (300 MHz, CDCl3): δ = 2.33 (1 H, dd, J = 4.8, 17.1 Hz), 2.66 (2 H, m), 2.97 (1 H, dd, J = 6.3, 13.2 Hz), 3.14 (1 H, m), 3.55 (3 H, s), 3.59 (3 H, s), 3.75 (3 H, s), 6.79 (2 H, m), 7.00 (1 H, d, J = 9.0 Hz), 7.15 (2 H, m). Compound 3g: 1H NMR (300 MHz, CDCl3): δ = 2.35 (1 H, dd, J = 5.1, 16.8 Hz), 2.63 (2 H, dd, J = 8.4, 16.8 Hz), 2.78 (2 H, dd, J = 7.5, 12.9 Hz), 3.07 (2 H, m), 3.58 (3 H, s), 3.59 (3 H, s), 7.19 (2 H, d, J = 8.4 Hz), 7.83 (2 H, d, J = 8.1 Hz). Compound 3h: 1H NMR (300 MHz, CDCl3): δ = 2.33 (1 H, dd, J = 4.8, 16.8 Hz), 2.58 (2 H, m), 2.85 (6 H, s), 2.99 (2 H, m), 3.56 (3 H, s), 3.61 (3 H, s), 6.60 (2 H, d, J = 8.7 Hz), 6.95 (2 H, d, J = 8.7 Hz). Compound 3i: 1H NMR (300 MHz, CDCl3): δ = 2.32 (3 H, m), 2.64 (1 H, dd, J = 8.7, 16.5 Hz), 2.91 (1 H, m), 3.58 (3 H, s), 3.63 (3 H, s), 6.00 (1 H, m), 6.30 (1 H, d, J = 15.6 Hz), 7.19 (4 H, s).
9All compounds have been satisfactorily characterised by 1H NMR and 13C NMR. 1H NMR data (300 MHz, CDCl3) for 5a: δ = 2.85 (1 H, dd, J = 6.6, 14.1 Hz), 3.10 (1 H, dd, J = 8.7, 14.1 Hz), 3.35 (1 H, m), 3.85 (1 H, dd, J = 6.0, 13.8 Hz), 4.05 (1 H, dd, J = 8.4, 13.8 Hz), 5.00 (2 H, s), 7.10-7.25 (10 H, m), 7.67 (2 H, m), 7.78 (2 H, m). Compound 5b: 1H NMR (300 MHz, CDCl3): δ = 3.36 (1 H, m), 3.50 (2 H, m), 3.95 (1 H, dd, J = 4.8, 13.8 Hz), 4.15 (1 H, dd, J = 7.8, 13.8 Hz), 4.95 (2 H, s), 7.05 (2 H, dd, J = 1.7, 7.7 Hz), 7.15 (2 H, m,), 7.30 (3 H, m), 7.45 (2 H, m), 7.60-7.88 (6 H, m), 8.00 (1 H, d, J = 8.4 Hz). Compound 5c: 1H NMR (300 MHz, CDCl3): δ = 3.00 (1 H, dd, J = 5.9, 14.0 Hz), 3.15 (1 H, dd, J = 9.2, 14.0 Hz), 3.35 (1 H, m), 3.90 (1 H, dd, J = 6.0, 13.8 Hz), 4.08 (1 H, dd, J = 7.8, 13.8 Hz), 5.00 (2 H, s), 7.15 (2 H, m), 7.25 (3 H, m), 7.35 (1 H, m), 7.50 (1 H, d, J = 7.8 Hz), 7.70 (2 H, m), 7.85 (2 H, m), 8.00 (1 H, d, J = 8.1 Hz), 8.05 (1 H, s). Compound 5d: 1H NMR (300 MHz, CDCl3): δ 2.80 (1 H, dd, J = 6.6, 13.8 Hz), 3.00 (1 H, dd, J = 8.6, 14.0 Hz), 3.30 (1 H, m), 3.75 (3 H, s), 3.85 (1 H, dd, J = 6.0, 13.8 Hz), 4.05 (1 H, dd, J = 8.3, 13.7 Hz), 5.00 (2 H, s), 6.75 (2 H, d, J = 8.7 Hz), 7.05 (2 H, d, J = 8.7 Hz), 7.15 (2 H, m), 7.23 (3 H, m), 7.68 (2 H, m), 7.78 (2 H, m). Compound 5g: 1H NMR (300 MHz, CDCl3): δ = 2.55 (3 H, s), 2.95 (1 H, dd, J = 6.3, 14.1 Hz), 3.15 (1 H, dd, J = 8.7, 14.1 Hz), 3.35 (1 H, m), 3.90 (1 H, dd, J = 6.2, 14.0 Hz), 4.05 (1 H, dd, J = 8.1, 13.8 Hz), 5.00 (2 H, s), 7.15 (2 H, m), 7.18-7.28 (5 H, m), 7.70 (2 H, m), 7.78 (4 H, m). Compound 5j: 1H NMR (300 MHz, CDCl3): δ = 2.80 (1 H, dd, J = 6.5, 14.0 Hz), 3.00 (1 H, dd, J = 9.0, 14.1 Hz), 3.30 (1 H, m), 3.90 (1 H, dd, J = 6.3, 13.8 Hz), 4.05 (1 H, dd, J = 8.1, 13.8 Hz), 5.00 (2 H, s), 7.05 (2 H, d, J = 8.4 Hz), 7.15 (2 H, m), 7.23 (3 H, m), 7.29 (2 H, d, J = 8.4 Hz), 7.70 (2 H, m), 7.80 (2 H, m).