References
For cycloadditions, see:
1a
Weichert A.
Hoffmann HMR.
J. Org. Chem.
1991,
56:
4098
1b
Tchelitcheff P.
Bull. Soc. Chim. Fr.
1954,
672
1c
Ireland RE.
Haebich D.
Chem. Ber.
1981,
114:
1418
1d
Audrain H.
Thorhauge J.
Hazell RG.
Joergensen KA.
J. Org. Chem.
2000,
65:
4487
1e For reactions with amines, see: Detty MR.
J. Org. Chem.
1979,
44:
2073
1f
Batra S.
Srivastava S.
Singh K.
Chander R.
Khanna AK.
Bhaduri AP.
Bioorg. Med. Chem.
2000,
8:
2195
1g For cyclopropanations, see: Kirmse W.
Rode K.
Chem. Ber.
1987,
120:
847
1h For hydrogenations, see: Ohta T.
Miyake T.
Seido N.
Kumobayashi H.
Takaya H.
J. Org. Chem.
1995,
60:
357 ; see also ref.
2
Langer P.
Armbrust H.
Eckardt T.
Magull J.
Chem.-Eur. J.
2002,
8:
1443 ; and references cited therein
3
Langer P.
Freifeld I.
Chem. Commun.
2002,
2668 ; and references cited therein
4a
Bertschy H.
Meunier A.
Neier R.
Angew. Chem., Int. Ed. Engl.
1990,
29:
777
4b
Montforts F.-P.
Schwartz UM.
Mai G.
Liebigs Ann. Chem.
1990,
1037
4c
Lygo B.
Synlett
1993,
765
Reviews:
5a
Oivin TLB.
Tetrahedron
1987,
43:
3309
5b
Barrett AGM.
Sheth HG.
J. Org. Chem.
1983,
48:
5017
5c
Rao YS.
Chem. Rev.
1976,
76:
625
5d
Pattenden G.
Prog. Chem. Nat. Prod.
1978,
35:
133
5e
Knight DW.
Contemp. Org. Synth.
1994,
1:
287
5f
Gerlach H.
Wetter H.
Helv. Chim. Acta
1974,
57:
2306
5g
Schmidt U.
Gombos J.
Haslinger E.
Zak H.
Chem. Ber.
1976,
109:
2628
5h
Bartlett PA.
Meadows JD.
Ottow E.
J. Am. Chem. Soc.
1984,
106:
5304
5i
Lygo B.
Tetrahedron
1988,
44:
6889
6a
Ley SV.
Lygo B.
Organ HM.
Wonnacott A.
Tetrahedron
1985,
41:
3825
6b
Booth PM.
Fox CMJ.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
1987,
121
6c
Mori K.
Sasaki M.
Tamada S.
Suguro T.
Masuda S.
Tetrahedron
1979,
35:
1601
7a
Langer P.
Bellur E.
J. Org. Chem.
2003,
68:
9742
7b See also: Edwards GL.
Sinclair DJ.
Tetrahedron Lett.
1999,
40:
3933
8
Krafft GA.
Katzenellenbogen JA.
J. Am. Chem. Soc.
1981,
103:
5459
9
Langer P.
Holtz E.
Karimé I.
Saleh NNR.
J. Org. Chem.
2001,
66:
6057
10
Typical Experimental Procedure for 3a: N-Bromo-succinimide (0.879 g, 4.9 mmol) was added to a CCl4 solution (40 mL) of 2a (0.700 g, 3.8 mmol) at r.t. The reaction mixture was stirred under reflux for 3 h. The reaction mixture was allowed to cool to r.t. and Et2O (20 mL) was added. The solution was filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n-hexane-EtOAc, 100:1 to 1:1) to give 3a as a colorless solid (0.732 g, 73%). 1H NMR (300 MHz, CDCl3): δ = 1.51 (s, 9 H, Ot-Bu), 2.21 (quint, J = 7.2 Hz, 2 H, CH2), 3.13 (t, J = 7.8 Hz, 2 H, CH2), 4.37 (t, J = 7.2 Hz, 2 H, OCH2). 13C NMR (150 MHz, CDCl3): δ = 25.10 (CH2), 28.46 (CH3), 32.54 (CH2), 72.83 (C-5), 81.65 (C), 85.80 (Br-C=C), 163.38 (O=C-O), 170.80 (O-C=C). IR (KBr): ν = 2975 (w, C-H), 1694 (s, C=C-O), 1613 (s, C=C-C=O), 1370 (m), 1295 (s), 1250 (w), 1243 (w), 1210 (m), 1170 (s), 1067 (s), 1039 (w), 1023 (w), 955 (w), 934 (w), 864 (w). MS (EI, 70 eV): m/z (%) = 263 (19)[M+], 206 (100), 190 (92), 162 (4) cm-1. The exact molecular mass m/z = 262.0205 ± 2 mD [M+] for C10H15O3Br was confirmed by HRMS (EI, 70 eV). Anal. Calcd for C10H15O3Br (263.131): C, 45.65; H, 5.75. Found: C, 45.38; H, 6.03. All products gave satisfactory spectroscopic and analytical and/or high-resolution mass data.
11
Typical Experimental Procedure for 4a: Tetrakis(triphenylphosphine)palladium (0.20 g, 0.017 mmol) was added to a 1,4-dioxane solution (5 mL) of 3a (0.150 g, 0.57 mmol), K3PO4 (0.726 g, 3.42 mmol) and phenylboronic acid (0.209 g, 1.71 mmol) at r.t. The reaction mixture was stirred under reflux for 6 h. The solution was allowed to cool to r.t. and a sat. solution of NH4Cl (20 mL) was added. The solution was extracted with Et2O (4 × 30 mL). The combined organic layers were dried (Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was purified by chromatography (silica gel, n-hexane-EtOAc = 100:1 to 25:1) to give 4a as a slightly yellow solid (0.128 g, 87%). 1H NMR (300 MHz, CDCl3): δ = 1.44 (s, 9 H, Ot-Bu), 2.11 (quint, J = 7.2 Hz, 2 H, CH2), 3.21 (t, J = 7.8 Hz, 2 H, CH2), 4.17 (t, J = 6.9 Hz, 2 H, OCH2), 7.20-7.34 (m, 5 H, Ph). 13C NMR (75 MHz, CDCl3): δ = 24.36 (CH2), 28.46 (CH3), 31.74 (CH2), 71.92 (C-5), 79.83 (C), 106.37 (C=C-O), 126.35, 127.60, 130.60 (CH, Ph), 136.18 (C, Ph), 167.92 (O=C-O), 170.73 (O-C=O). IR (neat): ν = 3079 (w), 2974 (m), 2921 (w), 2907 (w, C-H), 1687 (s, C=C-O), 1608 (s, C=C-C=O), 1492 (m), 1474 (m), 1452 (m), 1420 (w), 1384 (m), 1368 (m), 1321 (m), 1301 (m), 1269 (m), 1251 (m), 1231 (m), 1157 (s), 1113 (m), 1063 (s), 1038 (s), 956 (m), 930 (m), 880 (w), 839 (m), 812 (m), 778 (m), 756 (m), 697 (m), 654 (w), 508 (w) cm-1. MS (EI, 70 eV): m/z (%) = 260 (23) [M+], 203 (100), 186 (79), 169 (4), 157 (1). The exact molecular mass m/z = 260.1412 ± 2 mD [M+] for C16H20O3 was confirmed by HRMS (EI, 70 eV).
12
Akermark B.
Acta Chem. Scand.
1961,
15:
1695
13 The 2,3¢-bifuranylidene subunit is present in the natural products charlic acid, charolic acid and terrestric acid: Arai H.
Miyajima H.
Mushiroda T.
Yamamoto Y.
Chem. Pharm. Bull.
1989,
12:
3229
14 For the synthesis of 8, see: Lambert PH.
Vaultier M.
Carrié R.
J. Org. Chem.
1985,
50:
5352