Subscribe to RSS
DOI: 10.1055/s-2004-831254
Nicotinoyl Azide (NCA)-Mediated Mitsunobu Reaction: An Expedient One-Pot Transformation of Alcohols into Azides
Publication History
Publication Date:
07 October 2004 (online)

Abstract
A practical and simple method that allows preparation of azides from alcohols is described. The process involves oxyphosphonium-type activation and it is based upon the use of nicotinoyl azide (NCA), a cheap and easily accessible azide ion source.
Key words
azides - alcohols - nicotinoyl azide (NCA)
- See for example:
-
1a
Zhang S.Reith MEA.Dutta AK. Bioorg. Med. Chem. Lett. 2003, 13: 1591 -
1b
Deng W.-P.Nam G.Fan J.Kirk KL. J. Org. Chem. 2003, 68: 2798 -
1c
Jung YJ.Chang YM.Lee JH.Yoon CM. Tetrahedron Lett. 2002, 38: 8735 -
2a
Meyer J. Helv. Chim. Acta 1919, 2: 635 -
2b For recent examples see the following:
Michellizza S.Al-Mourabit A.Gateau-Olesker A.Marazano C. J. Org. Chem. 2002, 67: 6474 -
2c
Battaglia A.Barbaro G.Giorgianni P.Guerrini A.Pepe A. Tetrahedron: Asymmetry 2001, 12: 1015 -
3a For a treatise on azides, which includes discussion of rearrangement reactions, see:
Scriven EFV. Azides and Nitrenes Academic Press; New York: 1984. -
3b For a review of rearrangement of alkyl and aryl azides, see:
Stevens TS.Watts WE. Selected Molecular Rearrangements Van Nostrand Reinhold; London: 1973. - See for examples:
-
4a
Katritzky A.Singh SK. J. Org. Chem. 2002, 67: 9077 -
4b
Trauner D.Porth S.Opatz T.Bats JW.Geister G.Multzer J. Synthesis 1998, 653 -
4c
Schultz AG.Dai M.Kim SK.Pettus L.Thakhar K. Tetrahedron Lett. 1998, 39: 4203 -
4d
Kolb HC.Sharpless B. Drug Discov. Today 2003, 8: 1128 - 5
Stork G.Niu D.Fujimoto A.Koft ER.Balkovec JM.Tata JR.Dake GR. J. Am. Chem. Soc. 2001, 123: 3239 -
6a
Schildknegt K.Agrios KA.Aubé J. Tetrahedron Lett. 1998, 39: 7687 -
6b
Milligan GL.Mossman CJ.Aubé J. J. Am. Chem. Soc. 1995, 117: 10449 - 7 See for example:
Ito M.Koyakumaru K.-I.Ohta T.Takaya H. Synthesis 1995, 376 -
8a
Biffin MEC.Miller J.Paul DB. In The Chemistry of the Azido GroupPatai S. Wiley Interscience; New York: 1971. p.57 -
8b
Alvarez SG.Alvarez MT. Synthesis 1997, 413 -
9a
Vatèle JM.Hanessian S. Tetrahedron 1996, 52: 10557 -
9b
Vatèle JM.Hanessian S. Tetrahedron Lett. 1981, 22: 3579 -
10a
Mitsunobu O. Synthesis 1981, 1 -
10b
Hughes DL. Org. React. 1992, 42: 335 -
11a
Loibner H.Zbiral E. Helv. Chim. Acta 1976, 59: 2100 -
11b
Chen C.-P.Prasad K.Repic O. Tetrahedron Lett. 1991, 32: 7175 - 12
Viaud MC.Rollin P. Synthesis 1990, 130 - 13
Lal B.Pramanik BN.Manhas MS.Bose AK. Tetrahedron Lett. 1977, 23: 1977 - 14
He L.Wanunu M.Byun H.-S.Bittman R. J. Org. Chem. 1999, 64: 6049 - 15
Firouzabadi H.Iranpoor N.Sobhani S. Tetrahedron 2004, 60: 203 - 16
Iranpoor N.Firouzabadi H.Akhlaghinia B.Nowrouzi N. Tetrahedron Lett. 2004, 45: 3291 - 17
Thompson AS.Humphrey GR.DeMarco AM.Mathre DJ.Grabowski EJJ. J. Org. Chem. 1993, 58: 5886 - 18
Mizuno M.Shioiri T. Chem. Commun. 1997, 2165 - 19
Satish Kumar N.Praveen Kumar K.Pavan Kumar KVP.Praveen K.Vittal JJ.Swamy Kumara KC. J. Org. Chem. 2004, 69: 1880 - 20
Froeyen P. Phosphorous, Sulfur, Silicon Relat. Elem. 1993, 78: 161 - 21
Breslow DS. J. Am. Chem. Soc. 1950, 72: 4244 - 22
Halgren TA. J. Computational Chem. 1996, 17: 490 - See for examples:
-
24a
Iyengar BS.Dorr RT.Alberts DS.Hersh EM.Salmon SE.Remers W. J. Med. Chem. 1999, 42: 510 -
24b
L’Abbe G. Synthesis 1987, 525 - 25
Casimiro-Garcia A.Clercq ED.Pannecoque C.Witvrouw M.Stup TL. Bioorg. Med. Chem. 2000, 8: 197 - 26
Freiberg LA. J. Org. Chem. 1965, 30: 2476 -
27a
Gòmez-Vidal JA.Silverman RB. Org. Lett. 2001, 3: 2481 -
27b
Marusawa H.Setoi H.Sadawa A.Kuroda A.Seki J.Motoyama Y.Tanaka H. Bioorg. Med. Chem. 2002, 10: 1399 -
28a
Finke PE.Oates B.Sanders MG.MacCoss M.Malkowitz L.Springer MS.Gould SL.DeMartino JA.Carella A.Carver G.Holmes K. Bioorg. Med. Chem. 2001, 11: 2475 -
28b
Moore KW.Bonner K.Jones EA.Emms F.Leeson PD. Bioorg. Med. Chem. 1999, 9: 1285 - 29
Ito M.Koyakumaru K.Otha T.Takaya H. Synthesis 1995, 4: 376 -
30a
Kevill DN.Weitl FL. J. Org. Chem. 1970, 35: 2526 -
30b
Sasaki T.Eguchi S.Katada T.Hiroaki O. J. Org. Chem. 1977, 42: 3741 - 31
Mark E.Zbiral E. Monatsh. Chem. 1981, 112: 215 - For a review see:
-
32a
Shea KJ. Tetrahedron 1980, 363: 1683 -
32b For a review on bridgehead alkenes, see the following:
Warner PM. Chem. Rev. 1989, 89: 1067 -
32c
Billups WE.Haley MM.Lee G. Chem. Rev. 1989, 89: 1147 -
33a
Barret IC.Kerr MA. Synlett 2000, 11: 1673 -
33b
Hassner A.Stern M. Angew. Chem. 1986, 98: 479 - 34
Sampath Kumar HM.Reddy BVS.Anjaneyulu S.Yadav JS. Tetrahedron Lett. 1998, 39: 7385 - 35
Occhiato E.Jones JB. Tetrahedron 1996, 52: 4199 -
36a
Tao L.Wang Y.-G.Ma C.Zheng B.Chen Y.-Z. Synth. Commun. 1999, 29: 2053 -
36b
Xu H.Zhang X.Tian X.Lu M.Wang Y.-G. Chem. Pharm. Bull. 2002, 50: 399 - 37
Kanai T.Kanagawa Y.Ishii Y. J. Org. Chem. 1990, 55: 3274 - 38
Malkov AV.Spoor P.Vinader V.Kocovsky P. J. Org. Chem. 1999, 64: 5308 -
39a
Murahashi S.-I.Taniguchi Y.Imada Y.Tanigawaq Y. J. Org. Chem. 1989, 54: 3292 -
39b
Murahashi S.-I.Taniguchi Y.Imada Y.Tanigawaq Y. Tetrahedron Lett. 1986, 27: 227 -
39c
Varma RS.Naicker KP. Tetrahedron Lett. 1998, 39: 2915 - 40
Varasi M.Walker KAM.Maddox ML. J. Org. Chem. 1987, 52: 4235 - 41
Afonso CM.Barros MT.Godinho LS.Maycock CD. Tetrahedron 1994, 50: 9671
References
DSC (Mettler-Toledo Star® System, heating rate: 10 °C min-1): endothermic effect between 40 °C and 66 °C (melting of the reagent, ΔHendo = 106 J g-1); exothermic effect between 73 °C and 151 °C (Schmidt rearrangement plus decomposition, ΔHexo = 1051 J g-1).
421H NMR (300 MHz, CDCl3): δ = 1.24-1.31 (m, 6 H), 4.15-4.27 (m, 4 H), 7.35-7.42 (m, 1 H), 7.96-7.98 (d, J = 7.6 Hz, 1 H), 8.71-8.73 (d, J = 5 Hz, 1 H), 8.86 (s, 1 H). MS m/z = 282.26 (MH+).